PART E

First order examples and
applications

CHAPTER 21

Fuzzy relations

In this chapter three general families of examples (i.e., models) of 10S are
introduced, from which a number of more particular ones are obtained in
the next three chapters. The initial IOS-operations are explicitly characterized.
A< Y-elimination theorem is used to show that translation in these examples
can be implemented by means of an extra counter. Certain specific
t-operations are also studied.

Assume that M is a nonempty set, f, /5 is a splitting scheme for it, E is
a complete lattice with at least two distinct members and the distributive law

inf{a,supE,} =sup{inf{a,b}/beE,}

holds for all agE, E, < E. (A complete lattice is a partially ordered set all of
whose subsets have least upper bounds; the existence of greatest lower bounds
follows, for infE, =sup {a\VbeE,(a <b)}.) Writing L, T respectively for
sup &, supE, we have L =infE, T=infZ and 1 <T.

The pairing space of 16.4 is the starting point for the following example
which corresponds to example 17 in Skordev [1980], chapter 3. If the reader
is not interested in fuzzy relations, then she or he may assume E={ L1, T}
and interpret ¢(s,t) =T, ¢@(s,t) = L respectively as (s,t)eq, (s,)¢ (or vice
versa), so that the semigroup # below will then consist of ordinary relations.

Proposition 21.1 (Example 21.1). Take # = {¢/@:M? — E} (all the binary E-

valued fuzzy relations over M), ¢ < iff ¥st(o(s,t) <y(s,t)), I(s,5)= T and

I(s,t) = L otherwise, @(s,t) = sup,inf{o(s,7), Yy (r.t)}. (@, ¥)(f1(s),t) = @(s,1),

(@, W) fa(s),t) = i(s,t) and (@, ¥)(s,t)= L otherwise, L= Ast.I(f,(s),t) and

R = Ast.I(f,5(s),f). Then & =(#,I,I1,L, R) is a (*%)g, (#+x),-complete OS.
Proof. We have

@(Yx)(s,t) = supinf { (s, 7), Yx(r, 1) }
=supinf{e(s,r),supinf {¥(r,u), ¢(u, 1)} }

= supsupinf{@(s,7), Y(r,u), x(u,1)}

r o

=supsupinf{o(s,r), Y(r,u). x(u. 1)}

u r

155

156 First order examples and applications [Part E
= supinf { supinf{o(s,7), ¥ (r, 1)}, x(u, 1)}
u r

=supinf{@y(s,u), x(u,t) } = (o¥)x(s.t)

for all s,t, hence o(yy)=(pW)z. We also get ol = ist.sup,inf{ep(s,r),
I(r,1)} = @ and similarly I = @. Therefore, & is a semigroup with unit /.
All the subsets of # have least upper bounds, namely

sup # = Ast.sup {0(s,1)/0e s }.
Whenever # < %, ¢ =sup # and e, then

fPllf(Ss I) =sup mf{(p(s, l‘), W(rr t)}
=supinf {sup {0(s,r)/0cH# },Y(r,t)}
= supsup {inf {6(s,), ¥ (r,t) } /GeH}

= sup {supinf{6(s,r), ¥(r,1)} /0c#}
=sup {B(s,1)/0eH}
for all s,t; hence @ = sup (), while the equalities

Yo(s,t)= SL:p inf{y(s,r), @(r,)}
=supinf{(s,r),sup {6(r,1)/0c#}}

= supsup {inf {Y(s,7), 0(r,1)} /0 A}
= sup {YB(s,1)/0e 3}

imply W = sup 5. In particular, multiplication is monotonic.

Take L, =Ast.I(f,(t),s) and R, = Ast.I(f,(t),s). It follows that LL, =
RR,=1Iand LR, =RL, =0 =Jst. | using the fact that f,, f, is a splitting
scheme for M. We get (¢,) =sup{L,,R,/}; hence & is a (*%),, (#%%),-
complete OS by 19.4. The proof is complete.

The above 10S can be obtained in another way. Namely, take the pairing
space of 16.4 with N = M and augment it with multiplication, then use 16.10,
19.1-19.3.

In order to further sharpen the characterizations given in 19.6, consider
the sets f4(f,(M)), n=>0. It follows that whenever i# j, then f4(f,(M))n
fi(f1(M))= . Therefore, for every se M there is at most one n (if any) such

that sef%(f,(M))

Proposition 21.2. Let & be the IOS of example 21.1 or a subspace of it. Then
o (21 (9) [2(/1())) = o(s,1)

Ch. 21] Fuzzy relations 157

and {@>(s,t) = L otherwise,

Al@,)(f3(/1(8)), 1) = @y"(5,1)
and A(p,¥)(s.t)= L otherwise,

[fp](s.t)=sup{jff¢(f£1(rsJ,ri+1)/new&f‘a=s
&!‘0,. s Py EJIZ(M)&?-H =f1 [E)}

Proof. We have R o(f,(s).0)= o(s,t) and R,o(s,t) = L otherwise, while
Lip(fi(s)t)=(s,t) and L,o(s,f)= L otherwise. Proposition 19.6 gives
A(p,) =sup,R1L, oy", hence Alep,¥)(f5(f1(5))t)=@y"(s,t) and A(e,¥)
(s,t)= L otherwise. In particular, {@)(f5(f,(s)).t)=@LR"(s,r) and {¢)
(s,t)= L otherwise. It also follows that @LR"(s, f%(f,(t))) = ¢(s.t) and
@LR"(s,t)= L1 otherwise, hence {@>(f5(f1(s). f5(f,(0)=e(s,1) and
{@>(s,t)= L otherwise.

Proposition 19.6 gives [¢]=sup,(R,¢)'L,, hence [¢](s,t) =sup,(R, o)
Ly(s,t) for all s,r. As already mentioned, R,o(f,(s).t)=¢(s,¢) and
Rio(s,t) = L otherwise. Using this and the equality oL, (s,t) = (s, f1(t)), we
get the desired characterization of []. The proof is complete.

The following example corresponds to the pairing space of 16.4 again, this
time with N x M playing the role of N.

Proposition 21.3 (Example 21.2). Let N # J. Take % ={p/p:M x N x
M—E}, @ <y ifl ¢(s,x,t) <y(s,x,t) for all s,teM and xeN, @y(s,x,)=
sup, inf {@(s, %,), Y (r,x, 0}, (@W)(f1(hx.)=0(s,x0), (@¥)([2(s),x1)=
Yis,x,t) and (@,¥)(s,x,t)=_1 otherwise, I(s,x,5)=T and I(s,x,0)=1
otherwise, L= Asxt.I(f,(s),x,t) and R = Asxt.I(f,(5),x,t). Then & =(F,I,
IL,L,R) is a (%), (*#+*)y-complete OS.

The proof repeats that of 21.1 with members of N treated as parameters.

Proposition 21.4. Let & be the IOS of example 21.2 or a subspace of it. Then

Coo (219 % F5(f1(0)) = (s, %, 1), Al W) (51 1(5), %, 8) = (s, x, 1)
and (¢ 3(s,x,t), Ale,¥)(s,x,t) = | otherwise,

[o1(s,x,t) =sup{info(f; ' (r)x,ri ,)/new&ro=s

i=R

&roe sty Ef2(M)&r, = £ (1) }.

The proof repeats that of 21.2.
The following two statements cstablish a close two-way connection between
examples 21.1, 21.2.

Proposition 21.5. Let &, %, be the 10S respectively of examples 21.1, 21.2
based on the same sets M, splitting schemes and lattices E. Then % is
isomorphic with the subspace &, of &, based on &, = {¢/peF]}, where

158 First order examples and applications [Part E

@ = Asxt.@(s,t). The spaces &, and &, are isomorphic whenever N is a
singleton.
The proof is immediate.

Proposition 21.6. Let ¥, be the IOS of example 21.2 and let &, be obtained

from example 21.1 by taking M x N for M. (Observe that whenever f,, f,isa

splitting scheme for M, then Asx.(f,(s)x), Asx.(f,(s).x) is a splitting scheme

for M x N.) Then %, is isomorphic with the subspace %, of &, based on

F,=1{d/peF,}, where @(s,x,t,x) = ¢(5,x,t) and (s, x,t,y) = L otherwise.
This isomorphism is quite immediate, too. For instance,

@Ui(s,x,1, %) =supinf{@(s,x,r,2), ¥(r,z,1,x)}
=supinf{@(s, x,r, x), ¥(r, x, 1,x) }

=supinf{e(s,x,r), y(r,x, 1)} = eyY(s,x,1)

and @i(s,x,t,y)= L whenever y # x, hence @i = (/)"

Following Skordev [1980], binary fuzzy relations can be intuitively inter-
preted as semantical counterparts of programs processed by a computer (or
a man). Members of M are data and ¢(s,t) = d means that, given an input
s, a part t is produced among the outputs; the extent of accuracy is evaluated
by d. If ¢(s,t) =T, then ¢ is fully produced, while ¢(s,7) = L would mean that
nothing of t appears in the outputs at all. The initial 10S-operations
correspond to certain natural program constructs, while ¢ < means that
W is better than ¢'.

The above interpretation is not the only possible one; in fact, there are as
many as four pairwise dual interpretations. (Compare with the dual spaces
in exercise 19.4.) First, inputs and outputs may be interchanged, with ¢(s,t) = d
meaning that t is processed by ¢ and a part of s appears among the results.
Secondly, the partial ordering of E could be viewed in another way. Namely,
whenever @(s,t) = d, ¢,(s,1)=d, and d < d,, then the former computation may
be regarded as providing more information than the latter, so that ¢(s, 1) = L
would mean that the result, respectively t or s, is produced entirely. Thus
the motto of the corresponding two interpretations is ‘The less information
the better’, which seems to make some sense nowadays.

Example 21.2 involves parameters, i.c. additional sources of information
which is not liable to change. Examples 21.1, 21.2 can be slightly generalized
by introducing a kind of complexity measure for data processing. For instance,
if s is processed into ¢ for time p, and the time needed to process t into r is
D, then it is reasonable to assume that s is processed into r for time p,; + p,.
If, however, p, and p, are bites of storage needed for the corresponding
computations, then it would be reasonable to assume that p, + p, stands for
the maximum rather than the sum of p,,p,. Of course, one may measure
both these quantities by means of pairs of time and space. This suggests that
complexity of data processing could be measured by members of certain

Ch. 21] Fuzzy relations 159

semigroups as done in Skordev [1980]. A ‘complexity’ version of example
21.1 follows; example 21.2 may be modified similarly.

Proposition 21.7 (Example 21.3). Let S be a semigroup with a zero 0. Take
F ={¢/o:M xS x M—E}, ¢ < iff o(s,p,t) < y(s,p,1) for all s,teM and
pES! (,Dl}:’(s,p,t) =Supr,m+p2=pinf{cp(sﬂpl5r)! w(rsp27t]}v ((ps‘tb){f‘] (3}1p1t) =
qa(s,p, t), {m: d’)(fl(s)s pt)= (}’J(S, 120 t) and ((p! |,b}($, P I] =1 OthGrWiSC, I|:$, 0, S) =T
and I(s,p,t) = L otherwise, L= Aspt.I(f,(s),p,t) and R = Aspt I(f5(s), p,).
Then & = (#,1,I1,L,R) is a (%%),, (*x*),-complete OS.

Proofl. The verifications of 21.1 may be repeated once again, mutatis
mutandis. We have:

e()(s,p.t) = sup inf{o(s,py,r) Yx(r, ps, 1)}

r.pLtp2=p

= sup inf{o(s.p;,r), sup inf{y(r,ps,u), x(u,pa,0)}}

r.pitpi=p up3tpa=py

= sup sup inf{@(s,py,7).inf (Y (r, p3.u), x(u, ps, 1)} }

F.p1tpa=pupy+pi=p:

= sup inf{ (s, py, 1), (r, ps,), x(u,pa,t)}

rupmtpitpa=p

= Sllp sup iﬂr{iﬂr{w(saplsﬂa w(rsp%u)}sX[u:p‘hr}}

uprtps=pr.patpa=p2

= sup inf{oy(s,p,.u), x(u,pst)} = (o) x(s, ps 1)

wpytpa=p
for all sp,t; hence @(Yy)=(py)y. Taking L, = Aspt I(f1(t),p,s) and
Ry = ispt.I{f,(1),p,s), we get LL; =RR, =1, LR, =RL, =0 and (@,y) =
sup{L, @, R,¥r}. Any subset # of # has a least upper bound sup # = Aspt.

sup {6(s,p,t)/0e#'} and multiplication is continuous with respect to least
upper bounds, which completes the proof by 19.4.

Proposition 21.8. Let # be the IOS of example 21.3 or a subspace of it. Then

Lo (21080 ps f5(11(0) = @(s,p,1),
Al) (f5(f1(5)), p, t) = @¥"(s, p, 1)
and (@) (s,p,t), M@,)(s,p,t) = L otherwise,

Lel(s,p.t) =sup{info(f5 "(r), pi riv)/new&ro=s&py+ -+ po-y=p

&Poyeesy— 1 Ef2(M) &, = f(1)}.
The proof follows that of 21.2.

Proposition 21.9. Let #,,.%, be the IOS respectively of examples 21.1, 21.3.
Then %, is isomorphic to the subspace &, of &, based on &, = {@/peF,},
where @(s, 0, 7) = ¢(s, t) and @(s, p,t) = L otherwise. The spaces &, and & are
isomorphic whenever S = {0}.

160 First order examples and applications [Part B

The proof is immediate.

An interesting semigroup along with those suggested above is S = U, M",
where 0 = A and the semigroup operation is concatenation. Members of S
are regarded as computation traces, partial ones in general, for I, L, R leaves
no traces.

One can obtain more particular I0S from examples 21.1-21.3 by taking
specific sets M augmented with splitting schemes; several options were
suggested in the comments to 16.3. On the other hand, specific lattices E
can be taken. For instance, any finite distributive lattice would do. The sets
{n/n < &} and the intervals [0, 1], [0, oo] with their ordinary total orderings
can also play the role of E. Some standard first order examples will be
obtained this way in the next three chapters with E={Ll,T}. (We recall
that first order examples (i.e. models) are those composed of function-like
elements, while higher order examples are those composed of operator-like
elements.)

As far as first order examples are concerned, while the pairing scheme
IT, L, R involves a splitting scheme usually realized by a counter, the operation
¢) can be implemented by means of an additional counter. To show that
one needs the following Translation Elimination Theorem, a theoretical
enclave in this applied part of the book.

Proposition 21.10. Let & = (%, I, L,R) be an [OS and W, W,, W,e# such
that W,W=L, W,W=R, W(L.R)=W, LW=W(?LR) and RW=
W(RL, R?). Let
€ ={ceF|Wo=0W, i=12},
assuming that L, R,(L, R), {I>€%. Then ¢ is recursive in {W, W, W,}u %
iff ¢ is prime recursive in {W, W,, W,} U4, provided # < .
Proof. We have WL, R)=(W,L, W;R) and the more general equalities
Wie.y) = (W0, W),
LW(g,¥) = W(Lo, L), RW(p,) = W(Re, RY)
hold for i=1,2 and all ¢, yeZ.
The set % is obviously closed under =, IT. In order to show that it is closed
under {), suppose ce%. Then the equalities
gl W,= WeL=LW;{a),
RW;=WR, W (o)R=RW{e), i=12
imply (a>W,={I)>W,{c) by 6.20. Therefore,
Wi(a) =W Iy o) =<IpWi{o)={a)W,i=12
hence (o >e%.
Our next aim is to prove that {a) is prime recursive in W, W,, W,, ¢ for

all ¢e%, while (W), (W, >, (W, are prime recursive in W, W, W,.
Using 6.13, we get

[W,]W, = R[(W,L, W,R)] = R[LW,(L, R)] = R[W,1].

Ch. 21] Fuzzy relations 161

Writing W, for W(L, R?), it follows that
RZ[WD] =RW,[W,;] = WD(RL,sz[Wﬂ] = Wy(R, Rz[Wa]Js
hence R[W,]R < R?[W,] by 6.11. Conversely,
Woll, W(I, R[W,]R)) = W(I, RW(L, R[W,]R)) = W(I, W(R, R*[W,]R))
= W(I, Wo[W,1R)
gives R[W,] < W(I,R[W,]R) by 6.11, hence
R?*[Wy] < RW(I,R[W,]R) = W(R, R*[W,]R) = W;[W,]1R = R[W,]R.
Therefore, R?[W,] = R[W,]R.
Using the above equalities, we get for ce%
LW, [W,y]aLW,[W,y] = W aLW,[W,]=oLW; Wy [W,]
=gl 2[W,] =oL
and
RW [W,]aLW,[W,]
=W, R[W,1aLW,[W,]1= W, [W,]W,a LW, [W,]
=W, [W,]JoLW, Wo[W,]= W,[W;]6LR?*[W,]
= W,[W,]6LR[W,1R = W,[W,1cLW,[W,]R,
which implies (¢ = {I>W,[W,]eLR[W,] by 6.20. This equality is to be
simplified by deleting the multiplier {I.
On the one hand, R[W,]=[W,]W, and
(LLW,], [W,]W5) = (I, R[W,]) = [W,]
imply {I>[W,] <[W,] by (£). On the other hand,
(I, WoKI D [Wa]) = (LI Wo[W,]) = (L, I DR [W,] =<1 [W,]
implies [W,] < {I>[W,] by (££). Therefore,
Co)=LI>W [W,]6LR[Wy] =W, {I[W,]JcLR[W,]
=W,[W,]oLR[W,]
for all 6e¥. In particular, (/) is prime recursive in W, W,, W,.
The equalities W, L= LW,, W, R = RW, give (W, > = {I> W, by 6.20 and

similarly (W, = {15 W,.
The equalities

LW({L} {R))=W(L{L) L{R))=W(L*,RL)= W(L,R)L= WL,
RW({L).{R»)=W(R{L). R{R})=W({L},{R})R

imply (W) ={I>W({L), {R)) by 6.20.

Suppose that # <% and ¢ is recursive in {W, W, W,} u%. Then ¢ is
prime recursive in 8, = {{B), L), KA, (W), (W), (W3 u({%)
by 7.11, Noting that B, (L), {A)e%, we conclude that all the members of

162 First order examples and applications [Part E

A, are prime recursive in {W, W, W,} U4, hence so is ¢. This completes
the proof.

The elements W, W,, W, seem to express axiomatically the presence of an
extra counter besides that implied by II, L, R. Example 21.1 illustrates this,
while other first order examples can be treated similarly.

Proposition 21.11. Let %, =(Fg,lo. 1y, Ly, Rp) be the 10S of example
21.1 and let & = (F, 1,11, L, R) be obtained from the same example by taking
M x w for M, ie. by adding a new counter. To each @,e4, assign an
element @y such that @gls,mtn)=@u(s,t) and @Gels,mtn)= L
otherwise. Take W, (s,n,s,2n), Wi(s,n,s,2n+1)=T and W,(s,m,t,n),
W,(s,m,t,n)= L otherwise, W(s,2m,t,n)= L(s,m,t,n) and W(s,2m + 1,t,n) =
R(s,m,t,n). Let peF, By <F,. Then ¢ is recursive in {W, WI,WZ}UQZ
iff @ is prime recursive in {W, W,, W,}u@;. If p,eZ, is recursive in 4,
then @y is prime recursive in {W, W,, W, } uZ,.

Proof. The elements W, W,, W, satisfy the corresponding equalities of 21.10
and all i/, commute with W, Wz. Therefore, 21.10 implies that ¢ is recursive
in {W, Wy, W,} ug iff it is prime recursive in the same set.

It follows from 21.5, 21.6 that FO—(ﬁQ,I I}%2 L,R) is a subspace
of & isomorphic to .¥,. Whenever @y 4 is recursive in #,, then @, is
recursive in #;, hence @j is prime recursive in {W, W,,W,}uZ;. The
proof is complete.

The 1OS of examples 21.1-21.3 have some nice properties not shared by
spaces considered in chapter 25 below. Least fixed points of inductive
mappings are reached at level @ according to the proofs of 18.2, 18.14.
Collection operations can be introduced by exercise 18.5, while 19.6 implies
that there are elements U satisfying condition (1) of exercise 7.10. In the case
of example 21.1 Co{@, }(f5(/1(s)), ©) = @,(s.t) and Co{ep,}(s,t) = L otherwise,
U(s, f1(s)), U(s, f>(s)) =T and U(s,t) = L otherwise. Observe that U(gp,) =
sup{e, i} for all @,i).

The following two statements introduce certain t-operations in example
21.1, while examples 21.2, 21.3 are treated similarly.

Proposition 21.12. Let .% be the 10S of example 21.1 and In(p)=¢ '=
Ast.olt, s) (inversion). Then (P =Ae.(p, In(p)) is a t-operation with a
corresponding set of functional elements 2, = {U} such that &,{) satisfy
the axiom tupA,.

Proof. While our intention is to add In to the initial IOS-operations, we
take{) instead in order Lo ensure that ¢ is recovered from { ¢ » recursively.
We have ¢ = L{¢) and ¢ ' = R{¢). Using the easy equalities L] ' = L,
RT'=R, (pP)"' =y '™ (97")"'=¢ and (sup{e,y})~' =sup{p~",
¥}, we get

qopy=(oy. (@)™) =(py,y "o
=(L{@)L{Yy, R(¥PR{0}),

Ch. 21] Fuzzy relations 163

(@, ¥)» = ((@.) (sup {L1 0, RyY}) ™) =((@,), sup {@™ 'L,y " 'R})
=((L{@)», L4y D), UR{ @)L, R(YDIR)),
{od> =), up{Lio,Rip7'}) 7"
=({ @), U@~ 'L, @R)) = ({(@), UR{ @)L, L{@} R)).
The operation In is continuous with respect to least upper bounds of
arbitrary sets, hence so is {). Therefore, &, {) satisfy both conditions

(t#%), and (t+++),, hence tuA is valid by 18.20 or 18.22. Using 10.9%, 10.10%,
we get that {) is a t-operation, which completes the proof.

Proposition 21.13. Let &% be the IOS of example 21.1, My M, let
J:M g x M — M is injective and J(M3) < M. Take

St(@)J(s, 1), J(s, 7)) = lt, 1)

and St(¢o)(s, 1) = L otherwise, and {) = Ap.(¢p, St(p)). Then St is a storing
operation and %, {) satisfy the axiom tuA,.

Prool. Take % = Mj = {§/seM,}, where §=Atr. I(J(s,t),7), Ko(J(s, fi(2)),
fiJ(s,0)=T,i=1,2, and K4(s,) = L otherwise. Then

SKo(f1(8),r) = I(f1(J(s, 1)), 7) = SL(t, r) = (SL, SR)(f,(1), 1)

and SK,(/5(t),r) =38RI(t,¥) = (5L, SR)(f5(2),r), while §K,(t,r), (5L,5R)t,r)= 1
otherwise. Therefore, §K o= (5L, 3R).

Taking K, (J(s, J(, 7)) J{J[s 0,nN)=T, K,s5,5)=1 otherwxbe and K, =
K[!, one easily obtains 57K, = J(t,5)” and J(t,s)'K , = L.

The equality §S1(p) = @5 follows from the definition of St, while V3(5¢ <
si) says exactly that Si(I)e < St(I)y; hence the axiom (3$) holds by exercise
10.7. Therefore, St is a storing operation, which implies by 10.17 that {) is
a t-operation. The latter is obviously continuous with respect to least upper
bounds of arbitrary sets, hence &, {)} satisfy conditions (t##)y, (twsx),,
each of which ensures the validity of the axiom tuA ;. This completes the proof.

Remark. To avoid trivialities M, is assumed not a singleton, hence
Card (M) > w by J(M{) = M. If My =M, then we have a pairing function
for M as in exercise 10.1. If M, = M, then we have a restricted pairing
function for M as in Moschovakis [1971].

Restricted pairing functions appear naturally when Cartesian products are
considered. For instance, let J,:N2 — N, be injective, let N be a nonempty
set and let M = N, x N. Take a fixed roeN, Mo= Ng x {ro} and J((s,r),
(t,r)) = (Jols, t), r) for all s,teN, and reN. Then M, M, and J will satisfy
the assumptions of 21.13. (If a restricted pairing function for N, is given,
then one nevertheless gets a restricted pairing function for M = N, x N this
way.) A possible splitting scheme for this particular M is f, = Asr.(Jy(51, 5), 1),
[=Asr.(Jy(s,, 8), r) with certain fixed s, # s,€N,. If another splitting scheme
for M has already been chosen, then simple transition between the corres-
ponding pairing schemes for & are provided by exercises 4.6, 7.2.

It should be stressed that St is itself a t-operation by 10.18 since [= K K,
for any K;eMp and K,=K3;' or KuJ(s,1),0)=T and K,(s,t)=_1
otherwise.

164 First order examples and applications [Part E

The notions of t-recursiveness which correspond to the operations { }
of 21.12, 21.13 are called respectively in-recursiveness, st-recursiveness. The
following assertion shows that these t-operations can be combined into a
single t-operation, which allows both In, St to be added to the initial IOS-
operations. The notion of t-recursiveness thus introduced is called st, in-
recursiveness.

Proposition 21.14. Let & be the 10S of example 21.1 and let { p,{ »* be
introduced respectively by 21.12, 21.13. Then ip.{{¢@)*} is a t-operation
satisfying the axiom tpA; and so is Ap.{{ @)™

Proof. We have

St~ UG, 1), J(s, 1) =t 1) = olr. 1) = St(e)~'(J(s, 1), J(s,1))

and St(e~ ')(s, 1), St()~ (s, t) = L otherwise, hence St(¢p ~!) = Si(p) ~!. Using
this equality, 10.12 and 10.13, {{ @)} }* is expressed by {{ ¢ »*) and vice versa.
Therefore, both Agp.{{@)*) and Ap.4{ @) »* are t-operations by exercise 10.6.
They are continuous with respect to least upper bounds, which implies tuA,
by 18.22. The proof is complete.

The last three statements show that, leaving c-recursiveness to one side,
there are at least four different concepts of effective computability for E-valued
fuzzy relations: recursiveness, in-recursiveness, st-recursiveness and st, in-
recursiveness. Of course, they are effective only if the splitting and pairing
schemes involved are effective. A number of properties of these notions [ollow
directly from the general theory developed in chapters 7-10.

It will be shown in chapter 24 that the notion of st-recursiveness with
My =M generalizes the prime computability of Moschovakis. Adding U
to the initial elements, one gets a natural broader concept of effective
computability which in a sense generalizes Friedman’s computability by
effectively definitional schemes. The replacement of U by U* = Ast. T results
in a broadest notion which generalizes the search computability of
Moschovakis and which, as will be shown in the exercises below, extends
in-recursiveness as well.

EXERCISES TO CHAPTER 21

Exercise 21.1. Let % be the 10S of example 21.1 or 21.2, 21.3. Show
that (L,R)<I, while (L,R)=1 iff f,(M)uf,(M)=M, and {I>=1 iff
Unf 3/ 1(M)) = M.

Hint. Use exercise 16.5.

Comments. While |),f5(f(M))=M implies f,(M)uf,(M)=M, the
reverse implication fails in example 22.9.

Exercise 21.2 (Example 21.4). Let %, = (%, 1,11, L,R) be the 10S of
example 21.1 and let & = {o/Vstr(p(s,t), @(s,r) # L=r=1)}. Show that
S =(F, LI, [F2 L R) is a (%%),, (xxk),-complete subspace of &, and if
¢) is an operation over %, introduced by 21.13, then { }[# is a
t-operation over & which meets tpA ;.

Ch. 21] Fuzzy relations 165

Hint. Use 18.15, 18.16 and a t-analog to 18.16. The elements K, K, K,
of the proof of 21.13 are in &.

Similar assertions hold for example 21.2, 21.3; in the latter case one may
also take

F = {p/Vsppitr(p(s,p, 1), os, py, 1) # L=p, = p&r=1)}.

Exercise 21.3. Let % be the [0S of example 21.3. Specify a semi group S
and elements ¢,y such that ¢ is polynomial in but neither strictly poly-
nomial in ¢ nor strictly primitive in 1.

Hint. Take S = (w, +), (s, 1,s) =T and (s, p, t) = L otherwise, then take
¢ =y

Exercise 21.4. Let W, W,,W,,% be the same as in 21.10, €, = {o/Lo=
cL&Ro =R} and €, = {¢/Lo = cB*&Ro =0 A>&a(L, R) = ¢}. Show that
if Bc¥UE, %, and #, < F, then ¢ is recursive in {W, W,, W,}u
Ao B, iff it is prime recursive in {W, W,, W,} UBU{E,).

Hint. Following the proof of 21.10, show that (o> ={I)0 for all c€%,,
while {a)>=<{I>o({L),{R)) for all 6€%,.

Notice that ¥,L =%, and the elements U, V of exercise 7.10, 7.14, if any,
are in €.

Exercise 21.5. Let &, % be the 10S of 21.11, let #< F, B*< F, and let
a *eZ* correspond to each e such that y*(m(s), alt)) = (s, m, t, n), and
whenever t is not of the form #(r), then y*(ml(s), 1) = L, where m(s) stands
for f2(f.(s)). Let Z(s,m,s.(2m+ l)sgm)=T and Z(s,m,tz,n)= L otherwise.
Show that for every pe# recursive in {W, W,, W,, Z} u 4 there is a p*eF
recursive in #* corresponding to ¢ as above.

Hint. Take L* = {L,», R*= (R,). There is a recursive element @,e%

such that fip, = 2n; take W% = ¢,. Similarly W%, W*, Z* are constructed. If
@*y* correspond to ¢y, take (@Y)*=@*y*, (o,§)* = Col@*¥¥),
{p>*=Gu{@*>G, and [@]* = Co[e*C,], where Cy, G, are the elements
of #, introduced in 6.35 and exercise 6.4.

Exercise 21.6. Let &, & be the 108 of 21.11, p,e#, and B, < F ;. Show
that if @, is recursive in {W, W,, W,, Z)} U, then gy, is recursive in #,.

Hint. Take %3 =(%,) and get by exercise 21.5 an element @3
recursive in {#,) to correspond to @, Then @, will be recursive in %,
since Qg = Lo@§(I, 1)

Remarks. Combined with 21.11, the last two exercises show that trans-
lation is equivalent to counting. More generally, the storing operation in
first order contexts is connected with computations on complex storages and
can be implemented by stacking. The latter can be established by using
the fact that St(¢) = St(I)S,0S,, provided xS,5, = x and x§,0 = oxS§, for all
xe.#. However, we shall not burden the exposition with further (though
interesting) details.

166 First order examples and applications [Part E

Exercise 21.7. Show that each of the operations {), St of 21.13 satisfies the
assumptions of exercises 10.2-10.5. Take K 5 = Ast. I(J(s,), t), K4(J(s,0),2) =T,
Ke(J(s, J(t, 1), J(t,J(5,7))) =T and Ky(s.t), Kg(s,t)= L otherwise, and show
that the assumptions of exercise 10.9 are also satisfied.

Hint. Use exercises 10.8%*, 18.7.

Remarks. According to exercise 21.7, { » is always expressible in terms
of the operation St of 21.13. On the other hand, whenever M, is countable,
then St can be expressed in terms of { > and st-recursiveness reduces to
recursiveness. It follows easily from 10.20 that operations St based on wider
sets M, are more powerful. In particular, all such operations can be expressed
in terms of one which corresponds to M, =M.

Exercise 21.8. Let M, = M. Show that the operation Agiy.inf {p,] can be
expressed by St and certain elements.

Hint. Show that inf{e, ¥} =K St{(¢)KFSty)K5', where K¥(J(s, 1),
J(t,8))=T and K¥(s,t)= L otherwise.

Exercise 21.9. Let M, = M. Show that the operation In can be expressed
in terms of St and certain elements.
Hint. Show that

0~ = K SHU*K K (St(St(¢)K5 HKIK,.

Example 21.5. Example 21.2 with N=M""! n>0. Therefore, F =
{o/@:M""' - E} consists of n + 1-ary E-valued fuzzy relations.

Exercise 21.10. Let & be the IOS of example 21.5, let J:M? — M be injective
and, writing J(s,...,8,+,) for J(s;,J(53,...,8,41)) SUP)JI(Sy,Eq,... 1),
SoyeeesSy JS1uFtg. .y ty))=@(ty,....t, 1) and St(e)(sy.....S,,r)= L other-
wise. Prove that St is a storing operation in the sense of exercise 10.10 and
{ »=lio.(p, St(p)) is a t-operation satisfying tuA,.

Hint. Take ¥ = W where

Gisvess Y @)= At 1t riolI (S ity Sy S

While the multiplication of . is a particular instance of composition of
n + l-ary fuzzy relations, the operation St makes it possible to fully work
out such compositions.

Exercise 21.11. Let & be the 10S of example 21.5. Show that the mapping
Aoy, .., Asy. st sup inf {8y, ., 81 000, D))
Fleeesfn 1 <i<n

is st-recursive in certain elements.

Exercise 21.12 (Example 21.6). Let %= (F,, 1,11, L,R) be the 10S of
example 21.1, let < be a partial quasi-ordering of M (i.e. a reflexive and
transitive binary relation on M) and let J:M?*—— M be injective, such that
f1(s)=f5(s5) =5 (ie, both < and = hold). Suppose also that, if J(s,r) | and

Ch. 21] Fuzzy relations 167

t<r, then J(s,t)| and J(s,7), r < J(s,r), and if J(s,J(t, 7))]|, then J(J(s,t),r)]
and J(s, J(t, 1)) = J(J(s,t),r) for all s,t,re M. Take the subspace .&¥ = (%, I, 11,
L,R) of ¥, based on & = {p/Vst(¢p(s,t) # L =5 <1)}, and take St(o)(J(s,),
J(s,r))=olt,r) and St(¢)(s,f)= L otherwise. Show that St is a storing
operation and { } = A@.(¢@, St(@)) is a t-operation satisfying tuA,.

Hint. Take % ={§/3uJ(s,1)])}, where 3(,r)=T, if r=J(st), and
§(t,r) = L otherwise. Follow the proof of 21.13.

Remark. Proposition 21.13 corresponds to < = M?2. It cannot now be
claimed that e 4%, St is a t-operation and is sufficient to express ¢ ;
here is an example illustrating this.

Exercise 21.13. Let %, be the space of example 21.1 with M¥=
o X | Joo;,M" taken for M, the splitting scheme operating on @, x <y iff
lh(x) < Ih(y), where [h(k,s,....,s,)=m, and let J:M*2——= M#* be intro-
duced as suggested in the remark preceding 16.5 so that J(x, y)| iff lh(x)+
lh(y) < n. Show that <, J satisfy the assumptions of exercise 21.12.

If M} is defined as w x | J,_,M’, then [eZ=% and {) is expressible, but
still no elements K. K 5 can be specified to meet the requirements of exercise
10.9.

CHAPTER 22

Number functions and
relations

This chapter studies in detail some standard examples which consist of
functions and relations on natural numbers or sequences of natural numbers.
The classical notions of recursive enumerability, relative u-recursiveness and
relative partial recursiveness are accommodated, establishing another
connection with Ordinary Recursion Theory in addition to representability.

The starting point is examples 21.1, 21.2 with {1, T} taken for E. While
these spaces consist of relations, ie. multiple-valued functions, the single-
valued functions are shown to form respective subspaces.

Example 22.1. Example 21.1 with E= {1, T}.

Proposition 22.1 (Example 22.2). Let &, =(F,1,11,, L, R) be the TOS of
example 22.1 and

F = {o/Vstr(p(s,0), p(s,r) =T=r=10}

Then & = (F, 1,11, [%2, L, R) is a (x*), (*#x)y-complete subspace of ¥,

Proof. It is immediate that I, L, Re.# and it easily follows that # is closed
under multiplication and pairing, hence % is a subspace of ¥, as an OS.

Suppose that # is a well ordered subset of # and ¢ =sup # in 7. If
o(s,), p(s,) =T, then there is a 6e3# such that 0(s,t), 0(s,r)=T, hence
r = t. Therefore, pe#, which completes the proof by 18.15, 18.16.

Later, members of # , will be regarded as binary relations by interpreting
os.t)=1, o(st)=T respectively as (s,t)¢@, (s,t)ep. Thercfore, F =
lofo:M——M}, o<y iff osy, of =s.4(()), (@ Y)(f1(s) = ols),
(0, W) (f2(s) = W(s) and (¢, ¥)(s)1 otherwise, I =4s.s, L=/, and R=f,. In
other words, & is exactly the 108 of example 4.7, while & is the 105 of
example 4.8.

Example 22.3. Example 21.2 with E= {1, T}.

Proposition 22.2 (Example 22.4). Let &, = (%, 1,I1y, L, R) be the 10S of
example 22.3 and

F = {(,O/VSJC.U((P[S, Xy I)a (P(S, Xy F) = == ﬁ]}

168

Ch. 22] Number functions and relations 169

Then & = (#,1,114} 73, L, R) is a (%), (#*x),-complete subspace of &,.

The proof repeats that of 22.1.

Members of # ;, will be regarded as relations over M x N x M or multiple-
valued functions from M x N to M, writing (s,x,t)eep or teg(s,x) for
@(s,x,1)=T etc. Therefore, 7 ={p/og:M x N—->M}, o<y iff o<y,
oW = Asxlels. x).x). (9 W)(F1(5).X) = @(s.%), (@,)(fo(),x) = ¥(s.x) and
(.) (s, x)T otherwise, I = Asx.s, L=Asx.f,(s) and R = Asx.f,(s).

It is worth mentioning that example 22.2 can be obtained from example
21.4 by taking E = { L, T}: similarly for example 22.4.

Example 22.5. Example 3.1, that is example 22.2 with M = w, f, = As.2s and
fa=As2s+ 1.

Notice that for each s there are unique k, [such that s=2%2l+1)—1=
F50f (D) =k(0). In other words, @ =], /3(f(®)), which implies {I)=
(L, R) = I by exercise 21.1.

Proposition 21.2 provides the following explicit characterizations of the
10S-operations of example 22.5. Given a number s, then s = k(l) and

o (s)=150F 1)),
A, Y)(s) = y*(p(l)),

while [¢](s) =t iff there are n,ry,...,r, such that ry=s, 1g,...,7,— are odd,
Fiey = @((r; — 1)/2) for all i < n, and r, = 2t. That is,

(o) =11 "((f2 ¢)())

where n is the least number m (if any) such that ('3 *@)"(s) is even.
‘Primitive recursivey’ will stand below for ‘primitive recursive in the sense
of Ordinary Recursion Theory’ as opposed to the 10S-notion of primitive
recursiveness.
The notions of primitive recursiveness, and wp-recursiveness for unary
number theoretic functions turn out to be particular instances of primitive
recursiveness and recursiveness in the space considered.

Proposition 22.3 (u-Recursiveness Theorem). Let &% be the 10S of example
22.5,Z = Js.R(s)sgs and Z, = 1s5.2° — 1. Then the following equivalences hold
for all pesF, B F.

(1) @ is primitive recursive, (g-recursive) in 4 ifl ¢ is primitive recursive
(recursive) in {Z,} U %.

(2) o is p-recursive in 2 iff ¢ is recursive in {Z} U A.

Proof. The ‘if*-parts of (1), (2) are immediate since L, R, Z, Z, are primitive
recursive, functions and ¢, IT, A are primitive recursive, operations, while
[]is a u-recursive operation by the explicit characterizations of A,[1.

Let us show that for every @& there is a unique ¢e# representing ¢
in the sense of chapter 8. Take @(s)= @(k(l)) = @(k)(/) by definition. Then
k¢ = o(k) for all k; hence @ represents ¢. Supposing that @, also represents
@, we get @,(s) = ko (1) = kd(l) = @(s) for all s; hence ¢, = @.

If @ is primitive recursiveg (u-recursive) in 4, then 8.1 (respectively, 8.3%**)

170 First order examples and applications [Part E

implies that ¢ is primitive recursive (recursive) in %, hence it suffices to
show that ¢ is primitive recursive in Zg, @, / is primitive recursive in Zo, ¥
and Z, is recursive in Z.

Take 1, = A(R, L), , = u0.(Z(I,0R), L) and W, = p0.Z(I, Y 0R).

An easy induction on s implies that ¢ = As.s + 1. If s = 2], then

Yols)=0o()=R()=21+1=5+1.
If s=21+ 1, then
Vo(s)=Ryol) =¥ L)=20+ 1) =5+ 1.
It also follows by induction that i, = As.s = 1. First,
¥1(0) = Z(I, ¥, R)(0) = (1, ¥, R)(0) = 0.
If s=2[+1, then
Ya(8) =(Z(L Y, R), L)2+ 1) =L{l) =s— L.
if s=2[+ 2, then
Ya(s)=ZUy R)I+ 1) =(L ¢, R)2+ 1)+)=y, RU+1)=R()=s—1.
We get
W2(0) = Z(I, 1§, R)(0) = 1(0) =0,
Vals + 1) =(1,¥,Y,RIQ2(s + 1) + 1)
= Y, R(s + 1) =, R(s) =2,(s) + 1,
hence ¥, = 1s.R%(0) = 1s.5(0) = Z,. The elements s, y, are recursive in Z
by the proof of 6.39, hence so is Z,,.
Take 5 = A(l,) and
p=L(Zo)GUsYWZo)GYs3).
If (k) =1, then

ko) = Zo<k>WZo) G Y3 () = ZU(¢5¢ZO>G<w3>(I)

=T Yo Zo» G35 >(0) = Yo Zo {3 (0) =Y Zo (¥) (k)

= Zo{Wo > (1) = 1Y >(0) = Yor(0) = 1)
for all I, hence kp =t. If Y(k)1, then similarly kp(l) = yZ,<yrh (k)T for all
I, hence kp = 0. Therefore, i = p; hence is primitive recursive in Zg, .

Finally, if (k) =t, then k¢ = t; hence
Zo@ra(k) = k@ipr5(0) = t3(0) = Yo (0) = 1.

If @(k)1, then k¢ = O; hence :

Zo@r3(k) = kg 3(0) = OY5(0)1.

We get ¢ =Z,py5, hence @ is primitive recursive in Zg, @. The proof is
complete.

It was necessary to add Z or Z, to the initial elements for, as will be
shown in the exercises, neither of them is 10S-recursive.

Ch. 22] Number functions and relations 171

Proposition 22.3 yields a natural way of generating the unary partial
recursive functions; other unary bases are provided by 7.11 and exercise 7.3.
For instance, ¢ is partial recursive iff

pecl(L, KLY, KAD.<Z> /[1

The following analogue to 22.3 for mappings is obtained by an immediate
parametrization.

Proposition 22.4. Let & be the space of example 22.5, # < # and I': " - 7,
n > 0. Then the following equivalences hold.

(1) T is primitive recursiveo (u-recursive) in 4 iff T is primitive recursive
(recursive) in {Z,} U B.

(2) T is p-recursive in 4 iff T is recursive in {Z} U %.

The following example corresponds to example 8 in Skordev [1980],
chapter 2.

Example 22.6. Example 22.1 with set M and splitting scheme as in example
22.5. Therefore, F = {@/o S 0’} = {@/p:0 =2}, @ < iff @ = iff Vs(ep(s) =
W(s), @Y = As.dl@(s)) = 4s. v {Y(r)/ree(s)},

o(s/2), if 5 is even,

(@, P)(s) = {t.e’!((s —1)/2), if s is odd,

I= 55 L=fand R=F,.
The explicit characterizations of 21.2 now read as follows.

@ (s)=15(f1le())),

M@, ¥)(s) = v (o(D),
where s = k(J),
te[o](s) iff there are n,rg,...,r, such that rq=s,rg,...,7-y are odd,
ris1€0((r; = 1)/2) for all i<n, r, is even and t =r,/2.

The following two Partial Recursiveness Theorems embody the notions
of relative partial recursiveness for single-valued and multiple-valued
functions. The latter is introduced by the definition given in the remarks to
exercise 8.2, allowing f to be multiple-valued; alternatively, adding to the
definition of relative u-recursiveness a certain multiple-valued initial function,
say 4s.{0, 1} or As.w. We recall that the space of example 22.6 has an element
satisfying the assumptions of exercise 7.9%** U = 1s.{2s, 25 + 1}.

Proposition 22.5. Let & be the 10S of example 22.6 and &, its subspace
consisting of all the single-valued functions. (In other words, & is the space
of example 22.5.) Let e % |, Z#< F ;. Then

(1) ¢ is partial recursive in 2 iff ¢ is recursive in {Z, U} U %.

Remark. Though ¢e%, and # < & ,, the considerations could not be
carried out within &, since Ue F\.F ;.

Proof. It is the ‘only-if’-part of (1) that needs proof.

As shown in the proof of 22.3, there is a $€% | representing ¢. If 9,7
also represents ¢, it follows as in the proof of 22.3 that ¢, = ¢. Moreover,
¢ is recursive in Z, ¢ and V is recursive in Z, ¥ by the proof of 22.3.

172 First order examples and applications [Part E

If ¢ is partial recursive in %, then ¢ is recursive in {U}u#" by exercise
8.2%*%* hence ¢ is recursive in {Z, U} w . The proof is complete.

Proposition 22.6. Let & be the space of example 22.6, pc# and #< 7.
Then the following equivalences hold:

(1) ¢ is partial recursive in 2 iff ¢ is recursive in {Z, U} U .

(2) ¢ is a recursively enumerable relation iff ¢ is recursive in Z, U.

Prool. To each pe4 assign a single-valued @* such that ¢*(k(l)) =k, if
keeo(l), and @*(k(1))1 otherwise. Then it follows that @* = (@), where
Wolk(k)) =k and ,(s)7 otherwise. The element W, is a partial recursive
function, hence it is recursive in Z by 22.3. On the other hand, we get
@ = sup, ko* = @p*, where @ is the element considered in exercise 7.9%**,
Therefore, ¢* is recursive in Z, ¢, while ¢ is recursive in U, ¢*. The equi-
valence (1) is deduced as follows.

@ is partial recursive in %
iffft @* is partial recursive in #*
iff * is recursive in {Z, U} u #* (by 22.5)
iff @ is recursive in {Z, U} U .
Since a relation is recursively enumerable iff it is partial recursive as a multiple-
valued function, (2) follows immediately by taking % = (7. This completes
the proof.

Example 22.7. Example 224 with N=M""! n>0. (It is a subspace of
cxample 21.5 as well.)

Example 22.8. Example 22.7 with set M and splitting scheme as in example
22.5. Thus # = {p/p:0"——w}, o <y iff o<, oY= IAs,...5,.9(p(sy,...,
Sn)’ szs' E !Sn}!
S8 e a Sp) =
(@, ¥)(s,) { v

@(51/2,52,...,5,), il s, is even,
(((5; = 1)/2),555...,8,), il 5, is odd,

- I=12s8,...8,.8,, L=1s,...8,.2s, and R=1s,...5,.25, + 1.
Then for each s, there are unique k,[such that

sy =[5 (D) =kll.s;,....5,)

for all s,,...,s,, hence there are unique ki,....k,,! such that s, =E
ky(l,53,...,8,) for all s,,...,s,. This implies that for every pe.# thereis a unique
¢eF representing it in the sense of chapter 8, namely

Py ke[l 85008, e 8550005 85) = @k yow ke)l 855058)

Proposition 21.4 gives the following explicit characterizations of { >, A,
[1, which show that the first two operations are primitive recursive,, while
the last one is p-recursive.

COP(S1s8) = L3S0, 52,.--,5,))),
6(@! W{Sbmusn) = (mebk“:SZ'!' i 5Sn}:

Ch. 22] Number functions and relations 173

where s, = f5(f1(D),
[@)(s15---»5,) =1t iff there are m,r,...,1, such that ro=s,,7,...,7,-1 are
odd, 7.y = @((r; = 1)/2, s53,...,5,) for all i<n, r, is even and t =r,/2.

The following statement describes the primitive recursiveness, and ji-
recursiveness for n-ary number functions in terms of the corresponding IOS-
notions. Other characterizations may be obtained by making use of 7.11 and
exercise 7.3.

Proposition 22.7. Let & be the IOS of example 22.8, Z = As; ... 5,,. [3(5,)8gs 1,
Zo=48...5,. 2" —1 and I{=1s,...s,.5. 1<i<n Then the following
equivalences hold for all pe &, B< F.

(1) @ is primitive recursive,, (u-recursive) in 2 iff ¢ is primitive recursive
(recursive) in {Zg, I%,..., I8} U A"

(2) o is p-recursive in 4 iff ¢ is recursive in {Z,14,....I}} UB .

In particular,

(3) o is primitive recursive, (partial recursive) iff ¢ is primitive recursive
(recursive) in Z,, I5.....1}.

(4) ¢ is partial recursive iff @ is recursive in Z,I3,..., 1.

Proof. The ‘if*-parts of (1), (2) are immediate. In order to establish their
‘only if’-parts it suffices to show that Z, is recursive in Z and ¢ is primitive
recursive in Z,.I%,...,1% @. This completes the proof by making use
of 8.1, 8.3%**,

Proposition 21.5 implies that the space of example 22.5 is isomorphic to a
subspace of the present 1OS, where the isomorphism assigns to each unary
function f the n-ary one s, ...s,.f(s,). Therefore, Z, is recursive in Z by the
proof of 22.3.

Take /o, W to correspond to the elements i, of the proof of 22.3. Then
Wo, 5 are primitive recursive in Zo and Yo =A4s...5,.5, + 1, kih3 = ¥§.

Let G,_, be the element constructed in 7.15 and

Wo=ZolINZo{Ip-1Zo...{13Z)... G-
Then , is primitive recursive in Z,, I%,...,I; and
WalS1aeeerSn) =51 ...5(0,83,...,5,).
If o(sy,...,8,) =t, then §;...5,¢ =, hence
d)“;(ﬁ!h{sl,..‘,sn)=S_1-..S;(fli;'/3(0,51‘---,8,,}=E_llf3{0152,---,5,,)
= Y5(0,55,...,5,) = 1.

—
]

If ¢(sy,.--,5.) T, then §7...,5,¢ = O, hence

VaPYs(51remr52) = 5o T30 53000083 = OY3(0, 53,0151

We get ¢ =,@)5; hence ¢ is primitive recursive in Zo, I5,.... I}, @- The
proof is complete.

The reader has undoubtedly noticed the peculiarities which distinguish (1),
(2) from the corresponding equivalences of 22.3. We did not prove that ¢ was
u-recursive in 2 iff it was recursive in {Z,15,....I3} % because of our
inability to work out full compositions unless n=1: all the arguments of a

174 First order examples and applications [Part E

function except the first one were parameters taken into account but not
affected. This obstacle will be overcome in the exercises below either by
making use of a t-operation or by considering the space of functions
o:w"——w" instead.

The following wider space consists of functions operating on arbitrary
tuples of natural numbers.

Example 22.9. The 10S & of example 222 with M=w*=|),0"
J1=2x.(0,x), f5(A)=A and f,(s,x)=(s + L, x).

If x={(sy,...,s,), then we write (s,x) for (s,5,,...,5,); A is the empty tuple,
the only member of w°.

It follows that 37 ...5(x)=(s,,...,5,,x) for all xew* In particular,
5(x) = (s, x) and 5(A) = 5. We get (9, $)(0,x) = 0(x), (¢, ¥)(A) = ¥(A) and (¢, ¥)
(s + 1,x) = ¥(s,x). Notice that f,(w*)uf,(@*) =w* but (), f3(f1(0¥) # w*,
hence (L, R) =1, {I) # I by exercise 21.1. Proposition 21.2 gives { ¢ >(A) 1 and

(@ (5,%) =5{@>(x) = 05(x) = (s, 0(x)),

while [@](x)=y iff there are n,z,,...,z, such that zo=x, z;ef,(®*) and
zio = o(f; '(z)) for all i < n, and z, = (0, y).

The following Stack Recursiveness Theorem formulates the notion of
partial recursive stack function introduced in Germano and Maggiolo-
Schettini [1976] in terms of operations close to the basic IOS-operations in
this example.

Proposition 22.8. Let % be the 10S of example 22.9, Z(A)=0 and Z(s,x) =
(s +1,x). Then pe# is a partial recursive stack function iff ¢ is recursive in Z.
Proof. The partial recursive stack functions are generated from the initial
ones 0,S,P by means of multiplication, which is exactly the semigroup
multiplication of #, left cylindrification operator A¢.°¢ and repetition
operator ip.p%, where Q=1, S=Z, P(A)=A and P(s,x)=(s =1, x),
‘@(A)=0, ‘o(s,x)=(s,0(x)), @¥(x)=y iff there are n,z,,...,z, such that
zy =X, z;€f5(w*) and z, ., = @(z;) for all i <n, and z, = (0, y).
It follows almost immediately that P=(L,I), ‘o=Z(L,{¢)>) and
¢©" = [Re¢]; hence all partial recursive stack functions are recursive in Z.
On the other hand, R = SOY. Notice that RP =TI and 0¢" = for all ¢.
Writing 0o, 0,,0,,0 respectively for ((PPyO?), (Pp0)°, (P‘Rogo,0?)7,
Sa,(y0)%, one gets

(0, %) = a,(Y0)"(1, x) = “‘Ra,0, O 0)*(0, x) = 6,404(0, R(x))
=0,(R(x)) = pO(Pp0)"(x) = ¢(x),
a(A) = a,(Y0)7(0) = (YO)*(A) = Y(A),
a(s + 1,x) = o,(¢B)%(s + 2, x)
= Ra40,0WD)(s + 1, x) = 640,(s + 1, R(x))
=y 0o (s, x) = ¥(s, x);

hence (@,) = o. It also follows that (@) = S(PY,‘p) and [¢] = (Pg)", which
completes the proof.

Ch. 22] Number functions and relations 175
EXERCISES TO CHAPTER 22

Exercise 22.1. Let & be the space of example 22.5. Show that the members
Z,Z g 5.5 =1 and Y, = A5.0 of # are not 1OS-recursive.

Hint. It suffices to show that whenever ¢ is recursive, then either 3n(L'@€Z)
or Y@ = O, for the functions in question do not have this property. The
element ¢ has a normal form I[¢] for a certain primitive o. Notice that
Yn(W, =Yo7, while VaeZ3n(L'zoeZ) by the hint to exercise 6.12. Using
the unwinding method, show that either 3n(L'9eZ) or Y, = 0. The segment
to be used is of the form {6/¥n(z,0 < 0)}; though not regular, it contains [o]
whenever closed under A0.(I.¢0).

Exercise 22.2. Let & be an I0S and let f:" — w be represented by a primitive
recursive element ¢. Show that f is a primitive recursive function.

Hint. Assume n = 1. Let &, be the space of example 22.5 and let ¢, be a
primitive recursive member of %, the construction of which repeats that of
. It follows as in the hint to exercise 6.13 that for all s there are m and e
such that L"5¢ = o. As a consequence of the IOS-axioms, this holds both in

& and ¥,; hence L"5p, = o as well. However, 5 = f(s); hence a = L"'_@.

Therefore, 5¢,(0) = () (0) for all s, hence f = Z,@oy/s with Z, Y5 as in the
proof of 22.3.

Exercise 22.3. Let & be the space of example 22.8 and let

St{fp)(t_b . 't_n(le Sg5..- asn) = (p(tl’ wE I'l'r]r_2 Sy E;:['ﬁ‘.l)r

kis) standing for f%(f.(s)). Show that St is a t-operation with a set of
functionary clements @&, ={Zo,I%,....,I}} or Bo={Z,13,....I}} and the
following equivalences hold for all pe#, Z< Z.

(1) ¢ is primitive recursive (u-recursive) in 2 iff ¢ is primitive st-recursive
(st-recursive) in 4, provided we take the former #,.

(2) ¢ is p-recursive in 2 iff ¢ is st-recursive in %, provided we take the
latter 4.

Hint. Show by exercise 21.1 that St is a storing operation. Construct
elements K, K, primitive recursive in Z,, I5,....I, such that ¢ =
K. St(@)K , for all ¢. Make use of 22.7 and the equality ¥ = Stap)AU I

Example 22.10. Example 22.2 with M = @",n> 0, fy = 4s;...5,.(25,52,.. &)
and similarly for f,.

Consider the clements Zg=45,...5.(2 —1,85,...,8,), Z=451...5,.
((25, + 1)5g5, 525.-.58)and I, ;= 4s; .. 8p-(8%,. .58, 1 <i<n,wheres; =s,,
s;=s, and §;=s; otherwise. For all pe#, Z= 7 let ¢ stand for the i-th
co-ordinate function of @ and #® for the set of i-th co-ordinate functions of
members of Z.

Exercise 22.4. Let & be the 108 of example 22.10. Prove that the following
equivalences hold.

176 First order examples and applications [Part E

(1) ¢ is primitive recursive (recursive) in {Zy,1,,,...,0, J B iff
@Y,..., ¢" are primitive recursiveq (p-recursive) in |)i, .

(2) @ is recursive in {Z,1, ,,..., 1, ,J U@ iff V). o™ are y-recursive in
e 0

i=1+" ¥

Hint. Reduce (1), (2) to the corresponding equivalences of 22.3.

Exercise 22.5. Let ¢ be a n-ary number function and 4 a set of such functions,
0* =151...5,.(@(S1,...,S,), 52,...,5,) and let & be the TOS of example 22.10 so
that p*e#, #* = #. Prove the following equivalences.

(1) ¢ is primitive recursiveg (u-recursive) in 4 iff ¢* is primitive recursive
(recursive) in {Zg, 1, 5,.... 1, ,} O B*.

(2) @ is p-recursive in # iff * is recursive in {Z, 1, ,....,1,,} UB*.

Example 22,11, Example 22.2 with M = {...e,8,%8490,.../Vnle,, 3,€{0,1})},
fi=Axxy.x0xy and f, = Ax=y.x1*y.

Members of M can be regarded as records on an infinite tape, the asterisk
indicating the scanned symbol. Let S, = Axexy.x*ey and S,=S7'. An
element ye# is normal iff

Vxpx'y(Plx+y) = x"*y' =Vy" (P(x*)") = x"xy"))

Exercise 22.6. Let & be the IOS of example 22.11 and let # consist of normal
clements. Show that ¢ is recursive in {§,, S,} U iff ¢ is prime recursive in
{8,,8;}u&.

Hint. Take W =S5, W, =LS,, W,=RS, and use 21.10.

CHAPTER 23

Functions computable by
programs

While the previous chapter was devoted to number functions and relations,
the present chapter (as well as the next) deals with the more general case of
functions on arbitrary domains. Concepts of computability for such functions
are provided in particular by certain kinds of abstract programs studied in
Computer Science, e.g. program schemes augmented by counters and stacks,
which correspond to the so-called finite algorithmic procedures with counting
(Friedman [1971]) and stacking (Moldestad, Stoltenberg-Hansen and Tucker
[19817). The considerations below aim to show that those notions of
computability are particular instances of relative [OS-recursiveness, with all
the attendant consequences.

Let us start with the simplest program schemes, the unary ones. All the
other kinds will be obtained in terms of these.

We have unary function symbols f, f,. f3,... and unary predicate symbols
P,P,,P,,.... A unary scheme consists of instructions of the form

l;do fgotol,
I; if P then go to [; else go to [

and one instruction I, stop. We shall write simply /;f1; and [, if P then /; else
l,. Each label I; occurs just once as a prefix of an instruction; the instruction
itself will often be referred to as ;. Therefore, a scheme is a nonempty list
lis. ..., of instructions one of which, say [, is declared to be first.

Unary schemes are interpreted by means of unary bases to give interpreted
schemes or programs in those bases. A unary basis is a tuple

B={M s ons b Prsrs s Py

where M is a nonempty set, f[M——M, 0<i<u, and P:M——{0,1},
0<i<w Function and predicate symbols are interpreted respectively by
functions and predicates from B. The same letters will denote function symbols
and functions, respectively predicate symbols and predicates.

The execution of a program & employs one processing register r and goes
in a fairly ordinary manner. It starts with the first instruction; [; /' I; replaces r
by f(r) and the computation continues with [, provided f(r)]; in the case of
I, if P then I, else I, the content of the register remains unaltered and the next
instruction to be executed is ¢ither /; or [, depending on whether P(r) =0 or

177

178 First order examples and applications [Part E

P(r)=1.1f f(¥)1 or P(r)1, then the computation does not terminate; another
instance in which the computation process fails to terminate is that of an
infinite computation. If the last instruction [, stop is reached, then the process
terminates and the content of r is the final result. Therefore, the program 2
computes a partial function ¢,:M—— M.

If 1, is taken as a first instruction, then another function ¢, will be computed
etc. If 1, is the first instruction, then the function computed will, of course, be
Ou=I=1r.1.

Each program & has a corresponding characteristic system

(1) i(0,....0,) =0, l<i<m,

the equalities of which are obtained directly from the instruction of 2. Namely,
I;f1; yields the equality f0;= 0, I,if P then I; else I, yields (P — 8, 6,) = 8, and
I, stop yields I = 8,,, where @ = Ar.y(p(r)) and

o, if P() =0,
(P=@.) (r)= {.p(r), if P(r)=1,
t, il PO,
We shall make use of the fact that ¢,, ¢,,...,@,, is the least solution of (1)
(Mazurkievicz [19717; cf. exercise 23.1). Alternatively, one may formally define
the execution of a program £ as the first component of the least solution to
its characteristic system. (Why does such a solution exist?) Of course, the
equalities of (1) can be replaced by inequalities.

A few specific classes of program schemes will be considered now. These
are unary schemes with several interpreted function and predicate symbols,
i.., function and predicate constants. Correspondingly, the presence of such
constants assumes interpretations by means of more specific unary bases.

Firstly, there are unary schemes with counters, which we shall call
C-schemes. It suffices to have two counting registers since the work of a greater
number of counters can be modelled by just two.

A unary C-scheme is a unary scheme in which some of the function constants
L,R,K, L, R,, K, and the predicate constants Ev, Ze, Ev,, Ze, may eventu-
ally occur.

Given a unary basis B=(M, fy,...,fw Py,..., P,), C-schemes are inter-
preted by means of the modified unary basis

BCZ(mz p 1. I G 5 O 1 |
where
fi=dejesrife, 6o, Filrhi=1,....4,
Pi=Aeiear. Pir),i=1,...,0
The interpretation of the constants does not depend on B:
L =2c e5r.(2e4, €5, 7),
R = Acyeor.(2¢y + 1, ¢py 1),
K =Aesesr.([ey/2],¢5,7),
Ev = Ae cyr.rem(cy, 2),
Ze = Acicar.58¢

Ch. 23] Funections computable by programs 179

and similarly L,,R,, K, Ev,, Ze, operate the second counter c,. The
predicates Ze, Ze, are not really needed for computations involving functions
over M. They are added to ensure that all partial recursive functions can be
computed in the counters, including the successor and predecessor functions
traditionally used to operate counters. (Cf. 22.3 and exercise 22.1.)

The interpreted C-schemes are C-programs in the basis B. Such a program
2 computes a function ¢,:0> x M——o* x M. (Usually the first counter c,
or the register r are regarded as outputs,) A function 0:0* X M——w? x M
is said to be C-computable in B iff ¢ = ¢, for a certain C-program 2 in B.

In order to characterize C-computability we design an appropriate space.

Example 23.1. The 10S & of example 22.2 with w® x M, L, R playing the roles
of M, f.,f5. Therefore.

F ={p/p:0* x M—— 0 x M},
@Y = AcyCaor Y(@(cys €2, 7)),

(@, W)(2cys €2, 1) = @ley, €2, 1),

(@) (2ey + 1,05, 1) = Wlcy, €2, 1),

while proposition 21.2 implies that

<{p >(P‘-1{C1): C2: i‘} - (E(C(l), Crzn l") IH (P(cls CZ: !’) = ([."1, ‘Ci‘b r()s

7 standing in the sense of example 22.5,

[@l(cys cpr)=(ch, 5,) iff there are n, (ko Mo, 7o), (ko My 1r,) such
that (kg,Mg, 7o) = (C1,C2.7)s ki is odd and (ki My 1, 7ie 1) = (ki —1)/2,
m,,r;) for all i<n, and (k,, m,,r,)=(2¢},c5,r). Therefore, the first counter
¢, handles the pairing schemes IT, L, R. The second counter ¢, will be used
to implement the operation translation as done in 21.11.

Now the functions we are interested in are members of #. Predicates will
also be presented by members of # assigning P=(P-L,R) to P:w? x
M——{0,1}. The following statement characterizes C-computability in the
terms of IOS-recursiveness and prime computability of Moschovakis.

Proposition 23.1 (C-Computability Theorem). Let % be the I0S of example
23.1, peZ and B bea unary basis the carrier of which is M. Then the following
are equivalent.

(1) @ is C-computable in B.

(2) ¢ is prime recursive in

B = T R Ky v T 26 B L85, Pviss B

(3) ¢ is recursive in 4.

(4) o is prime computable in B, i.e., so are its three co-ordinate functions,

Proof. We shall verify (1)<=(2) and (3)=(2), while (2)=(3) is obvious and
(1)<==(4) is established in Soskov [1983].

Let ¢ be C-computable in B. Then ¢ = ¢,, where @,..., @, is the least
solution to a certain system

(5) Ti(#,,...,8,) =0, 1 <i<m, such that cach mapping T'; is of the form

180 First order examples and applications [Part E

A0.f8 or ABt.(P—0,1) or A0.1. Noting the equalities

(P—o,¥)=(P—L,R)(e,¥) = Plo,y),
(Ev— e, !ﬁ') = (Lo, R¢)> K= (Is I),

the system (5) can be rewritten as a;(1,0,,...,08,)=0,, 1 <i<m, with certain
1, -0, polynomial in 2. The latter system is in turn equivalent to the single
equality.

(6) o(l,6) =8,

where ¢ =(64,...,0,) is polynomial in #. Now, the element (¢4,...,¢,) is a
least solution to (6). (Cf. the proof of 9.16*.) This implies (¢,,..., @,) = R[a]
by 6.11, hence @ =, =1[a] is prime recursive in #. (We even have ¢
presented in a normal form.)

Conversely, all the members of % prime recursive in & are C-computable
in B. The program [, LL,, [, stop computes L, while similar programs compute
R, Ly, Ry, Ky, f,.... [The program I if Ze then [, else I3, 1,1y, I3Rl,, 1,
stop computes Ze; similar programs compute By, Zei 5500,

Let a program [,,...,l,, compute ¢ and a program I,,, (,..., l,,+x compute
i), assuming without loss of generality that no label occurs in both programs
at the same time.

Replacing throughout the first program the label I, by [, ;, the program
Liseoosdy—ts by s <o o3 by p Will compute gifr.

Replacing throughout the first program the label I, by [, . the program
loslise oo bnm o bt 1+ v oy Lwa ko Will compute (o,), where the new instruc-
tions are l; if Ev then I, ..4q else Lyiyro, Lpsre Kl and LKl o o.

Replacing throughout the instructions [,,...,L,_, the label l. by ly, the
function [¢] will be computed by the program [, /y,...,1,+, the new
instructions of which are I, if Ev then [, else [, ,, f,,,ﬂ.‘(!',,, and I, ,Kl,.
(While the last three assertions seem obvious, this does not mean that they
should not be formally proved.)

Suppose now that ¢ is recursive in #. The elements W, = L,, W, = R, and
W=Ep, K, satisfy the assumptions of 21.10. (Compare with 21.11.) The
elements f5,...,1%, Ze, P5,..., 5 commute with W,, W,; the element K,
commutes with L,R, while the elements E#,, Z&, satisfy the equalities
Lo =0B? Rao=cgA” Therefore, @ is prime recursive in {W, W,, W,} u# by
exercise 21.4; hence ¢ is prime recursive in #. The proof is complete.

It is worth mentioning that the programs constructed when proving the
implication (2)=-(1) above are structured, i.c. obtained from simplest
programs of the form £ =, f1,, |, stop by means of consecutive compositions,
branchings and loopings. Taken together, the proofs of (1)=(2) and (2)=(1)
ensure that all the unary C-programs can be transformed into equivalent
structured ones, (Notice that it suffices to have one counter in order to achieve
this.) This seems to capture the essence of the structurization result of Bhm
and Jacopini [1966] which will be revisited at the scheme level in chapter 26.

We proceed with the case of n-ary schemes augmented by counters. An
n-ary C-scheme is a unary C-scheme whose function and predicate symbols are

Ch. 23] Functions computable by programs 181

among the following:

¥, 1<i#j<n,

St B 1 Sy j <y
PLI...,,.E,.& Pz.h,..uini ol 1 = ilf' e 'sin =n,

plus constants operating the counters.
A n-ary basis is a tuple B,=(M, f1,...,fw Py,.--, P,), where

fiM"m——=M,l<m;<n,
Pi:Mk"_”'"‘{O, 1},]. g k;S .

A n-ary C-scheme is now interpreted by a unary modification of B,,

B:J = (M"r I}”' 1 = i '_"'L'Ji: nif‘lj,}il In2 =N E?il.....:',.s

T T in,lgil,...,imjs_n),

where
I‘;‘ﬂ =.lr1...i‘,,.{r1,.. .,f‘j_l,r,-, I‘J-+1,...,rn},

PL ,,,,, In:-lrl"‘rn'(rb"'ir}-—b fi(rila‘ '-arim‘): rj+11”-=rn:|s

P PRt (S DR (0 i1 { TN o N

S P i

Therefore, the n-ary C-programs in B, are just unary C-programs in B, and
their execution requires two counters and n registers. Consequently, a function
@:w* x M"——w* x M" is C-computable in B, iff ¢ is C-computable in the
unary basis B,,. This notion of C-computability is characterized in terms of
108 as follows.

Example 23.2. Example 23.1 with M replaced by M".

Proposition 23.2. Let & be the 10S of example 23.2, pe& and let B, be a
n-ary basis with carrier M. Then the following are equivalent.

(1) @ is C-computable in B,.

(2) @ is prime recursive in

- v - i 1 :-
B, =1{L1 Ry, Ky, I 1<i#j<n, i v A AT

e o = — B =1
Ze,EU;,ZEZ,PL;,"‘__;_,,..., ; ‘,[nslglla'“ﬂm;‘gn}'

Ty KL ses

(3) ¢ is recursive in %,,.

This follows from 23.1.

If all the functions of B, are unary, then C-computability in B, is again
equivalent to prime computability in B,, as shown in Soskov [1983]. Other-
wise this equivalence may fail since onc needs a stack in order to compute
arbitrary functions prime computable in B,. Thus we come to the next kind
of scheme to be considered, viz., schemes with counting and stacking, which
we shall call CS-schemes.

The n-ary CS-schemes are unary C-schemes whose function symbols include
the constants Siy,...,Si, So4,...,50, (Si for ‘stack-in’, So for ‘stack-out’). An
extra predicate constant may also be added to check on the emptiness of

182 First order examples and applications [Part E

the stack. Given a n-ary basis B,=(M, f1,...,fw P1..... P,), such a scheme
is interpreted by means of a unary modification of B,,

B;=(M" x M*’Sih“"Simsolﬂ"‘ﬂsamfﬁv-"f:uPsis--wP:]s
where M* =| J,M" and, x ranging over M*,

Siy=dricarpery s ta e Xh

Soi(rli veey ?‘"] = [rls wiady F'"],

S0iF s sy s X) = (P s e s Fim 1 Py i e e ey Py X)

=il i i el b PivvalaX)
Pi=2ry...t,x.Pyry,....re)

Correspondingly, the n-ary CS-programs in B, are exactly the unary C-
programs in B and a function @:w? x M" x M*——w? x M" x M* is CS-
computable in B, iff it is C-computable in B},

Example 23.3. Example 23.1 with M replaced by M" x M*.

Proposition 23.3. Let & be the 10S of example 23.3, pe# and let B, be a
n-ary basis with carrier M. Then the following are equivalent.

(1) ¢ is CS-computable in B,,.

(2) @ is prime recursive in

'@n={L23R2’KzaSifssO§aliiﬁn: slc""’fusczésggbﬂzaﬁ?v-u bt}‘

(3) @ is recursive in 4,.

This follows from 23.1.

Usually the content of the stack is regarded neither as an input not as an
output. That is, one retrieves from the stack only what has been loaded there
carlier and, on the other hand, programs can be composed in such way that
data loaded in the stack is later retrieved.

Example 23.2 is isomorphic to the subspace of example 23.3, assigning
@ = AC,Cat 1 % (@(C1y CoTry vy Tuh X) tO @iew? X M"——>w? x M", The
functions I"** may be computed by making use of the stack since IV =
Si¢SoS. It also follows that f¥= , (P,) can be obtained by multi-
plying /¥, P¥, Si,...,Si, S0,,...,50,; hence whenever ¢ is C-computable
in B,, ¢ is CS-computable in B,. According to Moldestad, Stoltenberg-
Hansen and Tucker [1981] the last implication can be reversed, provided
all the functions of B, are unary. The same holds whenever M is finite
(I. Soskov).

Functions over @? x M" CS-computable in B, are characterized as follows.

Proposition 23.4. Let B, be a n-ary basis, let &, correspond to it as in the
previous statement and let ¢:w? x M"——w? x M". Then the following are
equivalent.

(1) ¢ is CS-computable in B,, ie., so is ¢°.

(2) @°is prime recursive in %,.

(3) @° is recursive in &,

Ch. 23] Functions computable by programs 183

(4) o is prime computable in B,, i.., so are its co-ordinate functions.

Proof. The assertions (1),(2),(3) are equivalent by 23.3, while (1)<==(4) is
proved in Soskov [1983].

Certain kinds of recursive schemes and programs may also be considered.
These are systems of equalities

) Ty(0,...,0,)=0,1<i<m,

with arbitrary mappings I'; constructed by the operations of multiplication
and branching. In this way one gets unary recursive C-schemes, n-ary recursive
C-schemes and n-ary recursive CS-schemes, depending on the function and
predicate constants allowed. If the function and predicate symbols are inter-
preted, then we have recursive programs. The function ¢, computed by such
a program £ is by definition the first component of the least solution to the
corresponding system of equalities. However, recursion can be eliminated
since the First Recursion Theorem enables us to solve equations.

Proposition 23.5 (Recursion Elimination Theorem). Let 2 be a unary
recursive C-program (respectively n-ary recursive C-program, n-ary recursive
CS-program). Then there is a unary C-program (n-ary C-program, n-ary
CS-program) 2; in the same basis such that ¢, = @, .

Proof. Following the proof of 23.1, we rewrite the system (1) as a system
introduced by mappings polynomial in the corresponding set 2 (respectively
A,). The latter system is then solved by making use of 9.16* and finally the
implication (3)=>(1) of 23.1 (respectively 23.2, 23.3) completes the proof.

In fact, the above recursion elimination (i.e., implementation) algorithm
does not depend on interpretations, so the result holds for schemes as well.
The case of unary C-schemes is considered in Greibach [1975], while it is
well known in Computer Science that recursion can be implemented by
stacking. It should be stressed that the availability of I or Si;, So; determines
the particular n-ary recursive schemes which one can actually write down.
(CE. exercise 23.4.)

In another development, one may consider multiple-valued program
schemes. The definitions are the same but function and predicate symbols
are interpreted by multiple-valued functions and predicates. Analogues of
23.1-23.5 hold with & obtained from example 22.1 rather than 22.2.

A natural multiple-valued function constant to be allowed is U=
deyeor {(2c,¢51), (2, + L,e5,1)} or, equivalently, Acye,r.{(0,¢5,7), (1,62, 7)}
or Acyc,r.{(n, ¢y r)/new}, or the predicate constant Ac,c,r.{0,1}. The same
effect would be achieved by lifting the restriction that each label in a scheme
appear only once as a prefix. If the scheme consists of m instructions in which
k distinct labels occur, k < m, then the corresponding characteristic system
is of the form
I0,.....00<0, 1<j<m,

7
where 1 <i,..., i, < k. According to exercise 9.4 such systems may be solved

by making use of U while, conversely, U may be computed by the program
I,Ll,, I,Rl,, 1, stop. In the case of unary C-schemes and n-ary CS-schemes

184 First order examples and applications [Part E

the computability so obtained is equivalent to prime computability in B, U,
respectively B,, U. As pointed out in Soskov [1983], the latter is in essence
computability in B or B, by the effective definitional schemes of Friedman
[1971], a natural analogue to relative partial recursiveness.

Finally, infinitary schemes may also be considered. These are infinite lists
of instructions, one of them being /,, stop. Constants L,,R,,K,, Ev, and Ze,
are not needed since one counter proves sufficient now. The corresponding
notions of infinitary C-computability and infinitary CS-computability can
be characterized by means of (prime) c-recursiveness in appropriate 10S.

EXERCISES TO CHAPTER 23

Exereise 23.1. Let #=1,,...,1, be a unary program, let ¢, be the function
computed by # and let 7,,...,1,, be a solution to the characteristic system
of #. Show that ¢, <1,.

Hint. Let ¢.(s) =t. Then there are n,iy,... i, Fg,-..,7, such that iz =1,
Iy =m, ro=s,r,=t and for all k <n either I, fI, e? and ry,, = f(r,) or if
P then[;else [;€2, r,.; =randeither P(r,) =0, i, =ior P(ry) =L i, =J.
Starting with k = n show that 1, (r,) =t for all k <n. In particular, 7,(s) = 1.

Example 23.4. Example 22.2 with w x M taken for M, L= Ac,r.(2¢,;,r) and
R =leyr.2e, + 1,7).

Exercise 23.2. Let % be the IOS of example 234, let B=(M,f,,.... ..
P,,...,P,) be a unary basis, let p€# and let *:0> x M——w? x M be such
that @*(ci,co,1)=(ci.ch.7) iff ¢5=c, and elc;,r)=(ci.7’). Show that
@* is C-computable in B iff ¢ is recursive in #={ic,r.(c.fi(r)),
1 <i<u, (Aeyr.sgey), (Ao PY), 1 <i<u}

Hint. Let %, be the IOS of example 23.1. Then ¢* is C-computable in B
ilf it is recursive in a corresponding subset of %, by 23.1. Using exercise
21.6, show that the latter is equivalent to ¢ being recursive in %.

Exercise 23.3. Let . be the IOS of example 22.2, i.e. example 4.7. Show that
@ is recursive in q,...,0, iff Acycaro(cy,¢5,0(r)) is C-computable in
B=(M.f, fo, f1Y f3 8 ¥1seo s, Ev), where Ev is a predicate true of
f1(M), false on /(M) and undefined otherwise.

Hint. Let %, be the 1OS of example 22.2 with w x M taken for M,
preserving the splitting scheme of M, and let %, be the 10S of example 23.4.
Apply exercise 21.6 to &, &1, exercise 7.2 to &, ', and exercise 23.2 to & 5.

Remark. By 23.1 ¢ is recursive in y,...,\,, iff ¢ is prime computable in
ToSfaufihf2Y ¥ty Ev. The relative recursiveness of example 4.8 is
characterized in the same way since exercise 23.2, 23.3 can be restated for
multiple-valued functions.

Exercise 234. Let g,g,,9;:M——>M, h:M?*——>M and P:M——{0,1}.
Write recursive programs to compute the functions f introduced by recursion

Ch. 23] Functions computable by programs 185

as follows.

g(r), if P(r)=0,
a. fln= {Qz{f (9:(), i Pr)=1,

1. otherwise.

g(r), if P(r)=0,
b. f(r) ={h(f(g1(?')), ., ifPr)=1,

T, otherwise.

glr), if P(r)=0,
c. fr=1h/(g,(), f(g:(r), if P(r)=1,
T, otherwise.
Hint. a. (P—g,4,089,)=28.
b. (P*—g’, S8i,8i,50,450KS0,)=0.
C. (PS _’gsr 552511SUZQEBSIISIZSOlSCngiHhS.SOz) = 9.
Remark. Superscripts ¢ turn the last two binary recursive programs with
stacking into binary recursive CS-programs which can be transformed into
equivalent binary CS-programs by 23.5. More generally, this exercise shows

how arbitrary polyadic recursive procedures can be transformed into
equivalent recursive CS-schemes (cf. Skordev [1983]).

CHAPTER 24

Prime and search
computability

The best known concepts of effectively computable functions over arbitrary
domains are perhaps those of prime and search computability of Moschovakis.
This chapter is aimed to show that they are particular instances of
t-recursiveness.

We begin with some definitions from Moschovakis [1969] adduced in
slightly modified notations.

Let M be an arbitrary set the members of which are not ordered pairs,
0¢M and

* = cl(Nwu{0}/Ast.(s,1))

whenever N € M. Natural numbers are introduced by taking n+ 1 = (0,n),
while (sy,...,s,» stands for (n,(s,(S35. .-+ (5,,0)...))) and L¥, R*: M* — M* such
that L*(0)= R*(0)=0, I*(M)=R*(M)=1 and I*((s,t))=s, R*((s,))=t.
Object of interest are the n-ary partial multiple-valued functions over
M*, p: M*" 24",

The basic notion of prime computability is introduced via index schemes
following the pattern of Kleene [1959]. Given a subset N of M* and a list
of functions v, ..., ¥, ¥; being ni-ary, an n-ary function ¢ is prime computable
with constants derived from N in ..., \,, denoted @ePC(N,¥{,...), iff
@ =175;...5,.0(e,8,,...,8,) for a certain index eeN*. The universal function
o is the least fixed point of the mapping Q:%,— %, where #,=
{(Pu/(PO:Un;,OM*n—DZM‘} and Q(g,) is defined by the following clauses for
all e .

0. If teys,,...,s,), 1<i<l, then 1eQ(po)({0,n+ni), si.....8,
Pigayto)i

1. teQ(@g) (1, m 3, Sqy..ua8,)

2. rEQ((PO)(<25 n+ 1>9t’317"'=35)'

3. (61)eQ@o) ({3, n+2),8,7,51,...,8,).

40‘ L*(I)EQ(@G)(<41 n+ 170>1 L, Spyuns !Sn)'

4. R¥1)eQ(py)({4,n+1,13,1,8,,...,8,).

5. If teggle,r,55...,5,) for a certain reg@y(e,,s;,...,s,), then teQ(p,)
{<5="s31sez>= Sl!"'asn)'

6. If reMuU {0} and tegqle,,r,5;,.-..5,), then teQ(po)({6,n+1,e,,e,),
Pl peaagSa)

186

Ch. 24] Prime and search computability 187

If te@gles, u, U, 8,7, 514...,5,) for certain uepy({6,n+ l,e;,e2,55,...,5,)
and ve@y({6,n+ l,e,,e;3 >, ,5,,...,5,), then teQpy)({6,n+ 1,e;,e5 7, (s.7),
Brscssbe)

7, If EE(PD(e! 'sj-t-laslv- "5Sjs Sj-!—za' ¥ -,Sn), then tEQ(‘P[})[<77 ﬂsja e>7‘g]: x "151':}‘

8. Iftepyle,sy,... s,), then teQ(po (<8, n+m+ 1,100,851, 0. sSps Fraeenstmh

Notice that Q is a continuous mapping, hence ¢ = sup,a,, where a; is the
nowhere defined function and ¢, , =Q(g,). Traditionally, {e}(s;,....s,) =1
is written for teol(e,s,,...,s,). If @ePC(J,¥+,....¢¥)), then ¢ is prime
computable in \r,..., ;. Some of the functions ¥,,..., |y, may be regarded
as predicates, provided they are {0, 1}-valued.

Let us design an appropriate 10S to express the notion of prime
computability. It suffices to consider a space composed of unary functions
over M* since this set is closed under the prime computable pairing function
ASL.(8,1).

Example 24.1. TheIOS . = (#,1,I1, L, R) of example 22.1 (alias example 4.8)
with M* taken for M,L=41s.(0,s) and R=4s.(1,s). Then, F ={g/¢:
M*—2Y IT=ls.s, @<y il @<y, oy =ish(ols), (@,¥)((0,5))= o(s),
(@, ¥)((L,5)) = (s) and (@, ¥)(s)T otherwise.

Proposition 21.2 characterizes the operations { », [] explicitly as
follows.

te{@>(s) iff there are a,s,,t, such that s =7(sy), t =1l(t,) and toe@(se).

te[@](s) iff there are n,rgy.... yslgs---»La— such that ro =s, r;=(1,¢;) and
rio =@t for all i < n, while r, = (0,1).

A storing operation corresponds to the pairing function J = ist.(s,t) by
21.13. Namely,

St(@)((s.1) = (s, (1))

and St(@)(s)T otherwise. We broaden the notion of st-recursiveness by
assuming the following elements K§ — K¥ initial:

K¥=Js.(s,5), K¥((s,1))=(t,s) and K¥(s)T otherwise, K¥(0), K§(M)=0
and K%(s), K¥(s)=1 otherwise. Then the elements K,— K, of the proof
of 21.13 and exercise 21.7 are expressed as follows. One may take K5 = L, while

K,=KiSUKHKHID), Ks=K%,
K= K§St(K,KTK,)K} St} (Ky),
Ko=K4(L,R), K, =StK})KsKY,
K, =K*KSt(K*).

Therefore, an element ¢ is now st-recursive in & iff pecl({L, R, K¥ — K} }u
B/ T,¢ 3.0 1,50) ,

We recall that the set & of St is M = {§=1r.(s,t)/se M} and assign to
each p,e#, a unary function @ze# such that reqy(s) iff Ins,...s5,(s=
C81seens S) RIEQ(Sss-.55,))-

Proposition 24.1. If ¢ePC(N,y,,....¥,), then @ is st-recursive in N u

(V2PN 4%

188 First order examples and applications [Part E

Proof. There is an eeN* such that ¢ =4is,...s,.0(e,s,,...,5,), hence
P =@8KsK1St(L)K¥é. The element & is st-recursive in N, hence it
suffices to prove that & is st-recursive in ,,...,i,. For this purpose we
construct a mapping Q:.F — & st-recursive in ¥ ,..., |, such that & = pf.
Q7 (6). Namely, take

= 26.p((F,- T, 1) 1, SO, 0, 0, SSHOKESH6))p,0),
where
PO +m, 0080 s ik Y= 0(Csi00m) Lgixl
LKL), s,...,8,0) =1(2),
PL2n+1>,88,,...,8,>)=1(),
PK3n+25,6,1,5,,...,80) = 1((5, 1),
P4 n+1,0),t,54,...,5,0) = T(L*(1)),
P4 n+1,10,8,5,...,5,0) = T(R*(r)),
P51 €1,€3),815. 0,80 0) = 2((€ €1, 5105500, (€2, 5150, 8, D)),
PO n+ 1,81, €30,181,00,5,0) = 3(< ey, 13 845...,8,0), ifreMu{0},
PIL6,n+1,8,05),(85,7)815---58,0) = R*((Cez; 8,7, 84,-.-,5,)s
(K6.n+1,61,€;0,551,.,5. 0, 6,1+ 1,81, 0,7,51,000,5,))),
ﬂ(<<7s",j~e>as1s---a5n>)=3(<9a3j+1,51= c38p 84 2see0s5u))
PILBn+m+1,n),881.. .85 15 Fa) =3({6,84,...,5,))
and p(s)T otherwise,
P1((£€ 81y 8 0,) =<1, 81,0.,8,)5
Pa((€ e 8,78 0ias8, 0, (D)) =<8, U, 0, 8,7, 84,..-,8,)

and p,(s), p»(s)1 otherwise. Therefore, for all # the element Q (0) is defined
as follows.
0. IF tePd{sy,. 80), 1<i<l, then teQ (O)(KO0,m+mid, SieerSys
rls"':?ﬂ}l'
1. tefd (N1, mt>,80,....8,0)
2. reﬂ*(ﬁ)(«z T S e
3. (t, e (9){((3 B4+ 25, 0,0, 50,...,8))
4. I*¥()eQd” (6}(({4 R+ 1,00,0,80...,5,)
4,. R*(DeQ () (K4,n+1,1),t,5,,.. s,,)].
5. If teb(<ey,1,54,...,5,) for a oertain rebf({e,;,5,,...,5,), then

teQ (O 35,n,ey,e, s S1peecs Sy Q)

6. If te0({e1,7,51,...,5,0), reMuU{0}, then reQ (AL 6,n+1,¢e,,¢5),
FaSissneaBal;

It te6({ey,u,v,51,5,...,5,») for certain ued(K6,n+1,e1,¢,),s,

S1seesSy), VEO(K6,n+ 1,,,€5,7,81,...,5,0), then
teQ(O)(K6,n+ 1,e1,850,(5,7),51....,5,)).
7. I teb(<e,8;4 1,515,584 250+.,5,0), then
teQ (ONKT N, J,e):5815e155)).

Ch. 24] Prime and search computability 189

8. If teB({e.51,...,5,), then
feﬂy(ﬂ)[<<8..ﬁ+ m -+ 1,?‘!).,6, 31,---,5,,,r1,-- -:rm>)'

It follows in particular that Q (§o) = Q(p,) for all x,e.%# ; hence

& = (sup Q(0))” = sup Q'(0,) = sup A(0})

= sup Q"(0) = uf.Q(H).

The elements p, p,., p, are st-recursive (further details about this are left to the
exercises), hence () is st-recursive in /.. ...1J,. Therefore, & is st-recursive in
U1,...,0; by 10.8* which completes the proof.

Pl:_oposi!ion 242. If ¢ is a n-ary function and @ is st-recursive in
N U1,), then e PC(N WY y,....).

Proof. The function ¢ is prime computdbla in @; hence it suffices to show
that whenever @e# is st-recursive in N U{{;,....1,}, then @ePC(N,

The initial functions L,R,K%*—K¥* ,,....,JJ, and & eeN, are in
PC(N,yi,,...,\), and it is immediate that the set PC(N,},...,\,) is closed
under the operations =, I, St. [t remains to show that this set is closed under
< >, [] as well The case of iteration follows.

Suppose that gePC(N,y,.... i), i.e. ¢ = A5.0(e,,5) with a certain e,e N*.
Then there is an index e, e N* such that is.c(e;. e 5) = (I, @s.a(e, 5)) for all
eand /5.0, ,(e;,e,5) < (I, pis.a,(e,s)) for all e, n. (We recall that o, = Q"(0,).)

There is by lemma 21 of Moschovakis [1969] an index esN* such that
ole.s)=oa(e,,e.5) for all s and o,(e,s) = o,(e;.e,5) for all s,n. Writing v for
/s.gle,s), it follows that ¢y =(I, @), hence [@] <. On the other hand,
Ais5.04(e,s) < [¢] and whenever As.c,(e,s) < [¢], then

15.6,.,(e,5) < 15.0,. (e, e,5) < (I, pls.a,(e,) < (I, 0[0]) =[],
hence

U= Ais.ole,s) =sup As.o,(e,5) < [¢].

Therefore, [@] = ePC(N, ..., 1)

The case of translation is treated similarly, though it may be omitted
because the operation {) is prime st-recursive. (This will follow from the
proof of 27.17; see also exercise 21.7.) This completes the proof.

The following Prime Computability Theorem characterizes the prime
computability of Moschovakis in terms of st-recursiveness. A similar
characterization may be found in Skordev [1980].

Proposition 24.3. Let ¢ be a n-ary function over M*. Then the following are
equivalent.

“) (PEPC[N! wn:wl)

(2) @ is st-recursive in N U{iJ,,....¢,}.

(3) @ is prime st-recursive in N U{{,,....¥,}.

190 First order examples and applications [Part E

In particular, if ¢,¥,,...,¥; are unary, then ¢,y ,,...,\; can be substituted
for 3, 1,.... 1 in (). (3).

This follows from 24.1, 24.2 and the fact that, as mentioned in the proof
of 24.2, translation is prime st-recursive.

One may substitute N ={§=it.s/seN} for N since §=K%S{)K*
and §=35K*K,. The set N may also be replaced by #,=N* and
obviously #2K, < #,, hence the ‘boldface’ version results mentioned in
the remark to exercise 10.9 hold for st-recursiveness in N* U{iJ,,.... 0}

If yr,.....f, are single-valued, then the above constructions can be carried
out within the subspace of example 24.1 consisting of all the unary single-
valued functions over M*, which is a particular instance of example 22.2.

The characterization of the search computability of Moschovakis is now
immediate since

SC(N,Yrq,....00)=PC(N, U* \y,....0),

where U* = is. M* and SC(N,,,...,) stands for the set of functions over
M* search computable with constants derived from N in,..., . (Cf. Skordev
[1980] about this equality.)

Proposition 24.4 (Search Computability Theorem). Proposition 24.3 holds
with SC substituted for PC and U* added to the initial elements in (2), (3).

As shown in Soskov [1983], the functions over M prime computable in
U=LUR are in essence those computable by the effective definitional
schemes of Friedman [1971] or, more precisely, by the recursively enumerable
definitional schemes of Shepherdson [1975], hence st-recursiveness also
subsumes the latter notions. Notice that while st-recursiveness subsumes the
prime and search computability of Moschovakis and Friedman’s comput-
ability, by 23.1, 23.4 so does recursiveness as far as functions over M rather
than M™* are concerned.

In order to express the notion of hyperprojective function of Moschovakis
[1969], one should consider consecutive spaces .&,.%" constructed from
example 24.1 by 19.11. The correspending IOS-notion is that of #'-
recursiveness with #'={K¥ — K%, St, Ex}, where Ex is the functional E
of Moschovakis,

teLx(g)(s)
iff (t = 0&Vro((r,s))] &3Ir(0ep((r.s) v (t = L&V rIu # O(uee((r, 5)))).

We shall not go into further details since an analogous characterization via
#'-recursiveness will be obtained in chapter 29.

EXERCISES TO CHAPTER 24

Exercise 24.1. Show that the function Z is st-recursive, where Z(0)=0(0),
Z(s)=1(s), if seM, and Z(s) = R*(s) otherwise.
Hint. Z = K#St(K$) K0, K St(K%)K¥R).

Ch. 24] Prime and search computability 191

Exercise 24.2. Show that the function Nun is st-recursive, where Na(m) =0 for
all m, and Nn(s) = 1 otherwise.
Hint. Nn= R[Z(L, IL, K} St(K%$)K*(R, IL))].

Exercise 24.3. Show that the function Seq is st-recursive, where Seg(s) =0, il
5=4{5y,...,8,» for certain n,s,,...,5,, and Seg(s)= 1 otherwise.
Hint. Seq = R[], where

W =Z(IL 1L SHZ)K s(K¥K K%L, K(1L,St(K,)K¥o
SHZ)K (1L, K (1L, St(K*St(K¥)K¥) K ((K*R, 1L)))))).

Exercise 24.4, Show that the function Egq is st-recursive, where Eq(s) =0, if
s =(n,n) for a certain n, and Eq(s) = 1 otherwise.

Hint. Eq = K%St(Seq)K*¥(K,Nn, 1).

Remark. Nn, Seq, Eq make it easy to construct more sophisticated st-
recursive elements such as p, p,, p, in the proof of 24.1. For example,

py = K¥SU(K§St(Seq)K K o(K K ¥ St(L)KY, 0).

CHAPTER 25

Further examples

This chapter studies several ‘less standard’ first order examples of 10S
involving intuitions connected with probabilistic nondeterminism and the
reliable estimation of functions. They originate in examples 13, 18, 19 of
Skordev [1980], chapter 3.

Proposition 25.1 (Example 25.1). Let M be an infinite set with a splitting
scheme f},f,. Take # = {p/@:M* [0, 0]}, @ <y iff Vst(p(s,) < (s, 1)),

oY(s, 1) = (s, F(r, t) = sup { Y @(s, r(r,1)/N = M is fini te},
r reN

(@, W)(f1(5).8) = (s, 1), (@, W){f(5), 1) = (s, 1)

and (¢, ¥)(s) = 0 otherwise, I(s, s) = 1 and I(s, t) = 0 otherwise, L= Ast.I(f,(5),t)
and R =Ast.I(fy(s).2). Then & =(Z,I1,L,R) is a (%), (#+%),-complete
0Os.

Proof. The quadruple (#,11, A8.L8, A0.R6) is both a CCPS and a SCPS
by 16.4, 16.10 since all the subsets of [0, «v] have least upper bounds.

The equalities ¢l = [= @ are immediate. Let us verify that multiplication
is associative and right distributive with respect to IT.

(@¥)x(s. 1) = Z oY(s,r)x(r, 1) = Zr:(Z (s, u(u, r))x(r, f)
= ZZ“‘, (s, e, (e, 1) = D pls, u(e 1)x(r)
= gfp(s. H)Z Y, r)xr,t) = gfp{s, uppr(,t) = (P (s,)
for all s, , hence (py)y = @(fy). It follows that

(@, Y)x(f1(5),0) = (@, W) (f1(), Il) = ¥ pls,), 1)

=@lst) = (ox, ¥x)(f1(s), t)

and similarly (@, y)x(f2(s), 2) = ¥x(s, 1) = (@1, ¥x)(f2(s), 1), while (@, ¥)x(s,1) =

(@x, ¥ x)(s,t) = 0 otherwise, hence (@,)x = (@, Yy).
Let # be a well ordered subset of # and @ = Ast sup {6(s, t)/6eH#}.

Following Skordev [19807, we show that @ = sup (##Y) and Yo = sup Y. #
for all i. It is immediate that #y < @i Suppose that #y <. If r,....7,

192

Ch. 25] Further examples 193

are distinct members of M and 6,,...,6,3#, there is a fe# such that
#,,...,6,, <6; hence

m

m
Y. O, 1) < Y O(s, e 1) < O(s, 1) < (s, B).
i=1 i=1
This is valid for all m,0,,...,0,, 7y,...,7, hence T ols, r¥(r, t) < (s,)
for all m,ry,...,#, which implies 3, @(s, rWi(r,) < 1(s, t). Therefore, @i(s, t) <
1(s, t) for all s, t, hence @y < 7. Therefore, @y = sup () and similarly Yo =
sup .. It follows in particular that ° is monotonic. Finally, 19.1-19.3 imply
that & is a (*%),, (**x),-complete OS, which completes the proof.

It is worth mentioning however that the equality (sup)W = sup (HV)
does not hold for arbitrary #. Indeed, the element

U =sup {L, R} = Ast.(L(s, t) + R(s, 1))

does not satisfy condition (2) of exercise 7.8 since U(I, I} £ I. The equality
Ulep,) = Ast.(@(s, t) + (s, t)) holds instead.

Proposition 25.2. Let & be the IOS of example 25.1 or a subspace of it. Then
{ 3,A[] are characterized as follows.

@O (f5(1(9)), F5(f1(0))) = ols,),

.....

and (@ > (s, t), Ale, ¥)(s, t) = 0 otherwise,
[o](s, 1)
-)y 1(5,70)0(f 3 (rohs71)- - @(f 3 H(ruc 1) T (rs f1(2)):

mro,...F, _ gEf2(M)rn
Proof. The proof is based on the fact that (@) = A(@L,R), Alg,y)=
sup, ™(0), where T = A6.(¢@,0y), while [¢] =sup,I'(0), I' = 40.(1, pb). We
present the case of iteration only.
We have
TH0)(s, t) = (I, O)(s, t) = Y_I(s, ro)l(ro, f1(1)).
o

Supposc that n > 1 and T™0)(s, 1) =, s eramnr 1(5:Ta)@(f 7 ' (Fo)y71) -
@(f 3 M=)y) (ry, f1(1)). Then
I 0)(s, 1) = (L, @T0))(s5,8) = I(s, f1(0) + Y, (s.ro)@I™O)(f 7 (o))

ro&falM)

=1I(s, /1(1) + E;m I(S.ro)gﬁﬂ(f 2 H{roh IT(O)(r, 1)
=Y s ro)l(ro, f1(0)+ Y Is,ro) Y @(f 2 (ro)7)

roef 5(M)

x E Hr’rl)@(f;l(rl]: rz)"'@(fgl(ri—l}r r!‘)ﬂri!fl(l])

Deient by, ...ty g&f(Mhr
= Y Is,ro)o(f 3 "ok 7y) . @(f 3 (7),) (riu f1(0))-
i<+ lrge..ri— 8l Ml

Using the equality [¢](s, £) = sup,(I"™(O0)(s, t)), we get the desired character-
ization of [. This completes the proof.

194 First order examples and applications [Part E

Of course, the pairing space of example 25.1 can be augmented with multi-
plication in another way to become the 108 of example 21.1 with E =[0, co].
Propositions 21.2, 25.2 show that the corresponding probabilistic and fuzzy
spaces have identical operations IT, {) but different =, A, [].

The following space consists of probabilistic functions.

Proposition 25.3 (Example 25.2). Let &, =(F . 1,11, L, R) be the 10S of
example 25.1. Take

F = {(p/qo:Mz—»[O, 1]&‘9’5(24@{5, t) < 1)}

Then & =(F,1, 1, #2,L,R) is a (*x),, (¥*),-complete OS.
Proof. Itisimmediate that I, L, Re# and & is closed under I1,. If o, e Z,
then

chgb(s, t)= ZZQO(& MW, 8 =3 ols, r)gvﬁ(n <Y olsn<l

for all s; hence @y e#. Therefore, # is closed under °.

As shown in Skordev [1980], # is closed under least upper bounds of
well ordered subsets. In fact, let # be such a subset of # and ¢ =sup # =
Ast.sup {0(s,t)/0e#}. Let ty,...,t, be distinct members of M and 6,,...,
0, . Then there is a Oc.# such that 0,,...,0,, <0, hence

S o)< ¥ 0st)< Yol 0 <1,
i=1 i=1 t

This holds for all m,0,,...,0u t1,...,t, hence 371, s, ;) <1 for all m,
tyy...,ly, which implies 3% 0(s, t) < 1, hence peZ. Therefore, & is a (##),,
(x%%),-complete subspace of &, by 18.15, 18.16. The proof is complete.

A few words about the intuition behind example 25.2. The members of &
may be regarded as semantical counterparts of programs processed by a
computer as in chapter 21; in this case ¢(s, t)[0, 1] is the probability of s
being processed into t. This intuitive interpretation is extended to cover
example 25.1 by regarding ¢(s, t)e[0, co] as the average number of trajectories
leading from s to t (from ¢t to s, in another version); cf. Skordev [1980] for
a further discussion.

Proposition 25.4 (Example 25.3). Let M be an infinite set with a splitting
scheme fy,f, Take F ={@/p:M —2M}, ¢ <y iff ¥ is an extension of
¢, i.e. Dom @ < Domy and y(s) = ¢(s) for all seDom ¢, where Dom ¢ =
{s/o(s) # &}. Take @yi(s) = Y(¢(s)), if seDom ¢, (s) =Domy, and @y (s)?
otherwise, (@, ¥)(f1(s))= @(s), (@, ¥)(f2(s))=(s) and (o, Y)(s)T otherwise,
I=175.5,L=f; and R=f,. Then & = (&, LLIL, L, R) is a (s##),-complete OS.

Proof. It easily follows that < is a partial order, the operations °,II are
monotonic and [is a unit.

Dom () = {se Dom @y/py(s) = Dom x}
= {seDom ¢/¢(s) = Dom s &s(¢p(s)) = Dom g}
= {seDom @/@(s) = Dom ¥y} = Dom @(yy)

Ch. 25] Further examples 195

and if seDom i)y, then
(ey)1(s) = x(W(e(s))) = oW x)(s);
hence (oy)y = @ 7).

Dom (¢,)z = {seDom (¢, ¥)/(¢. ¥)(s) = Dom y}
= { f1(s)/seDom @ & ¢(s) = Dom y}
U { f(s)/seDom ¢ &Y(s) < Dom y}
= {f,(s)/seDom @y} w{ f(s)/seDom iy} = Dom (¢y, ¥x)

and if /,(s)eDom (g,)y, then (@, Y)z(f1(s) = @x(s). respectively (@,) x(f(5)) =
W(s), if fa(s)eDom (o, ¥)y; hence (e, ¥)x = (@x. ¥x).

Dom L(e, &) = {s/f1(s)e Dom (¢,)} = Dom ¢

and if seDom ¢, then

L(e,)(s) = (0, ¥)([1(5)) = oo(s),

hence L(q,) = @. Similarly, R(gp,) = . Therefore, % is an OS.

Let # be a well ordered subset of # and Y e #. Take ¢ = u#. Then 8 < ¢
for all @ since #° is well ordered, hence #) < . Suppose that Sy < 1.
If seDom @y, then se Dom ¢, hence there is a 6e# such that seDom 6 and
@(s) = 0(s). It follows that se Dom 8; hence se Dom t and 7(s) = Oy(s) = @y(s).
This holds for all seDom ¢@y; hence @y < 7. Therefore, gy = sup ().

Let # and ¢ be the same as above. Then L# < Lo. Suppose that L# < .
If seDom Le, then f,(s)eDom ¢ and Lo(s) = ¢(f,(s)). There is a Oe# such
that f,(s)eDom@ and 0(f,(s)) = ¢(f(s)); hence 1(s) = LO(s) = Le(s). There-
fore, L ¢ < t;hence L p=sup L 39" Similarly, Ro =sup R3#; hence & is (%),
complete. The proof is complete.

Proposition 25.5. The operations { > A,[] of example 253 can be
characterized as follows.

o> (f3(f1(8) =15 f1(e(s))
Alp, W)(/3(11(8))) = @¥"(s),

and (¢ >(s), Alp,)(s)1 otherwise.

We say that t is a @-successor of f5(s) ifl teq(s), while s is @-regular iff
sef(M)uf(Dom ¢). Take the least subset D, of M such that whenever s
is g-regular and all its @-successors are in D, then seD,,. Then te[¢](s) iff
seD, and there are n,r,...,r, such that ro=s, ry, is a @-successor of r;
for all i <n, and r, = f,(¢).

Proof. We take I'=10.(p,0) and prove by induction on n that
T(0)(f4(f1(s5)) = @¥i(s), if i < n, and I'"(0)(s) T otherwise. Exercise 18.4 gives
A(p,) = sup, I'"(0), which implies the desired characterization of A and that
of {) by (@) =A@L,R)

Let teo(s) iff seD,, and there are n,ry,...,r, such that ro=s, r;, is a
@-successor of r; for all i < n, and r, = f,(t). We show that [¢] = o, following
a similar argument from example 18, Skordev [1980], chapter 3.

196 First order examples and applications [Part E

Let us show first that Dome = D,,. In order to get D, < Dom ¢ it suffices
to show that whenever s is ¢-regular and all its ¢-successors are in Doma,
then seDoma. If s=f(t), then seD, and o(s)=t, hence seDomo. Let
s = f,(r),reDom ¢. Take a te@(r). Then t is a p-successor of 5, hence te Dom .
All ¢-successors of sarein Dom ¢ = D, hence se D,,. It follows that o(t) < a(s),
hence o(s) # & and seDomg.

Our next objective is to prove that (I, ¢o) < a. Suppose that se Dom (1, ¢a)
and write N for (I, ¢o)(s). In other words, either sef,;(M) or sef,(Dom @)
and ¢(f;'(s)) €D, while

N ={t/s=f,(t) v tealo(f1(s))}.

Then s is p-regular and all its ¢-successors are in D; hence seD, = Doma.
It follows easily that N < a(s). Conversely, suppose that tea(s). Then there
are m,rg,...,r, such that ro=s, r;. 1 is a g-successor of r; for all i <n, and
ra=f1{t). If n=0, then s=f,(t); hence teN. If n>0, then sef,(M) and
tea(p(f3 (s))), hence te N again. We get o(s) = N; hence a(s) = (I, pa)(s) for
all seDom(!, o), which implies (I, po) < 0.

Suppose that (I, pt) <t. Then for all s

(1) sefi(M) v sef,(Dom @)&@(f 5 '(s)) = Domt=seDom 1 &1(s)

= {t/s=1,(t) v tex(o(f 7 *)}-

If s is p-regular and all its @-successors are in Dom t, then seDom <t by
(1); hence D, = Dom 7.

Let N = {5eD,/1(s) = o(s)}. Whenever s is ¢-regular and all its ¢-successors
are in N, then all its ¢-successors are in D,; hence seD,. Moreover, all
¢p-successors of s are in Dom 1 since D, € Domt, so (1) gives

(s)={t/s=11(0) v tealo(f3 ()}

hence (s) = (I, o)(s) = 6(s) and seN. The definition of D, implies D, = N,
hence 1(s) = a(s) for all seD,,. Therefore, 6 < 1.

We conclude that o = u6.(I, @0), hence [¢] = o. The proof is complete.

The spaces of examples 22.1, 25.3 have the same carriers % and operations
I1,{ D, but different <,°,A,[]

Example 25.3 is related to the idea of reliable estimation of functions.
Following Skordev [1980], an element ¢ &# is a reliable estimate of a function
fi:M—— M iff Dom ¢ = Dom f and f(s)e@(s) for all seDom ¢. Given two
reliable estimates ¢, of f,¥ is better than ¢ iff Dom @ < Doms and
i(s) < o(s) for all seDom ¢.

The 10S of example 22.2 is based on #o={f/f:M—— M}. Thus the
members of .# are reliable estimates of members of % ; and, as observed in
the cited work, if ¢, are reliable estimates of f,g, then ¢y is a reliable
estimate of fg. It will also be shown in the exercises that (¢, ¥), (¢, [¢]
are reliable estimates of (f,g), <> and [f].

As far as reliable estimates are concerned, the relation ‘is better than’ seems
more natural than ‘is an extension of’. Modifying & in this way, one gets
the following example.

Ch. 25] Further examples 197

Proposition 25.6 (Example 254). Let & =(#,LILL,R) be the OS of
example 25.3 and %, be obtained from % by substituting < for <, where
@ < W iff ¥ is better than ¢. Then &, =(F ;, LLIL, L, R) is a pA ;-iterative OS
and %, %, have identical operations ¢ >,[1.

Proof. It follows easily that <, is a partial ordering of & and -,II are
monotonic with respect to it; hence &, is an OS. Suppose for instance that
© <19, ¥ <¥,. Then

Dom ¢y = Dom @ n ¢~ Y(Dom) = Dom ¢, Ny ' (Domy,)=Dom ¢,
and if seDom ¢y, then

@1¥1(5) =¥ 1(0,(5) S ¥ ((s)) S Ylols)) = @ (s)

hence @ <, 0,¢,.

Let 3 be a subset of # well ordered with respect to < and let ¢ = sup #.
Then ¢ = u # by the proof of 25.4. It is immediate that # < ; ¢. Suppose that
< ;1. If se Dom @, then there is a @€ # such that seDom 0 and 0(s) = ¢(s).
The inequality 6 < , 7 implies se Dom 7 and (s) < #(s); hence (s) € ¢(s). This
holds for all seDom ¢; hence ¢ < ;7. Therefore, ¢ = sup, . It follows from
18.18 that &, is uA,-iterative and has the same initial operations as &. The
proof is complete.

Other interesting first order 10S-examples can be constructed corres-
ponding to related examples from Skordev’s book, bearing in mind the general
connection between operative and combinatory spaces to be established in
chapter 27. Among them are probabilistic spaces using countably additive
measures on o-algebras of sets rather than discrete probabilities, spaces
connected with the notion of V-definiteness and topological versions of
examples 22.1, 22.2, 25.3, 25.4. Some of those examples can be modified to
accommodate the complexity measure of data processing.

EXERCISES TO CHAPTER 25

Exercise 25.1. Let & be the 10S of example 25.1 and ¢ ! = Ast.g(t, 5). Show
that { »=Ap.(p,p ') is a t-operation with a corresponding set
Bo=1{U}, and ¥,{) satisfy the axiom tuA,.

Hint. Adapt the proof of 21.12 with + substituted for sup, where ¢ + ¢ =
Ast.(@(s,t) + Y(s,1)).

Exercise 25.2. Let & be the 1OS of exdmplc 25.1 or 25.2 and let J be the
same as in 21.13. Take St(@)(J(s,t), J(s,r))=e(t,r) and St(p)(st)=
otherwise. Show that 5t is a t- operauon satisfying tuA,.

Hint. Follow the proof of 21.13.

Analogue to 21.14 and the relevant exercises to chapter 21 may also be
established.

Exercise 25.3. Let . be the IOS of example 25.3 or 254 and let St be
introduced as in 21.13. Show that St is a t-operation satisfying tuA,.

198 First order examples and applications [Part E

Hint. Follow the proof of 21.13. Use 18.21, respectively a t-analogue
to 18.18.

Exercise 25.4. Show that, unlike translation, iteration in examples 25.3, 25.4
is not always reached at level @ as a least fixed point.

Hint. Modifying a counterexample of Skordev [1980], take sy ef, (M),
Sar1 =[105,) if Imn+1=2""1), and s,,,=/[5(s5,) otherwise, @(s0)=
{85,53,...} and ©(s,4 1) =5, +3, then take I = A0.(1, ©8), o = sup,["(0). Show
that s,¢Domo and s, ,eDome for all n; hence (1, po) # 0.

The following exercise shows however that bounded multiple-valuedness
ensures w-accessibility.

Exercise 25.5 (Examples 25.5, 25.6). Prove that the functions ¢ such that ¢(s)
is finite for all s form iterative subspaces of examples 25.3 and 25.4 in which
the least fixed points of all inductive mappings are reached at level .

Exercise 25.6. Let &, %, %, be the IOS of examples 22.2, 25.3, 25.4 based
on the same M, f,,f,. Show that whenever ¢,ye% =%, are reliable
estimates respectively of f, geF , then (¢, y), (@, [¢] are reliable estimates
of (f,gh {f> [f]

Hint. Use 18.15 to show that %, is a subspace of %, which implies that
& is a subspace of &,. Use the fact that ¢ is a reliable estimate of fiff o <, f.

Remark. It follows that whenever all the members of #,< %, have
reliable estimates in 4<% =% | and f is recursive in %, then [has a
reliable estimate ¢ recursive in 4.

Exercise 25.7 (Example 25.7). Let M be an infinite set with a splitting scheme
fi1./; and u¢M. Take F ={p/@:Mu{u}—-2"""&pu)=u}, p<y iff
Vs(o(s) = y(s)), @ =1Asdlo(s)), (@) f1(s)=0ls), (@, ¥)(f2(s))=
Y (s) and (@, Y)(s) = u otherwise, I = As.s, and extend f,.f, to L, ReZ. Show
that & =(#, 1,11, L, R) is a uA -iterative OS. Give explicit characterizations
of{ AL 1

Remark. This modification of example 22.1 is an analogue to example 2
of Skordev [1980a]. Example 22.2 can be modified to form a subspace again.
Intuitively, u indicates that an unproductive termination has occurred. Notice
that @O = O fails, and if f,(M)u f,(M) c M, then (0,0) # 0.

Exercise 25.8. Let & be the space of example 25.7, let J be as in 21.13 and
define St as follows. If req(r), r # u, take J(s, 1)eSt(@)(J(s,t)). If uep(r), take
ueSt(p)(J(s,t)). Take St(p)(s) =u, provided s¢J(M,, M). Show that St is a
t-operation satisfying tuA,.

Exercise 25.9. Show that the element V =s.{f,(s), f,(s)} in example 25.4
satisfies condition (1) of exercise 7.14, while in example 25.7 U = LU R satisfies
condition (1) of exercise 7.10.

