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CHAPTER 4

Operative spaces

The algebraic system of operative space is introduced in this chapter and its
operations of multiplication and pairing are studied.

Suppose we are given a partially ordered semigroup & with a unit [, an
operation I1:.% ? — & called pairing and two distinct elements L, Re # . Some
notation: small greek letters range over %, while certain capital latin letters
stand for fixed elements of #. For the sake of brevity we write (¢, ) for
I(e, ¥) and (@4,...,@,) for (@, (@,,...,®,)), provided n > 2. Occasionally =
denotes the semigroup multiplication of #. Natural numbers are represented
in .# by elements of the form = LR".

The 5-tuple & =(#,I[,II,L,R} is said to be an operative space (OS for
short) iff the following three axioms are also satisfied.

J‘5"1' GDE%;'L‘E%:’*[(P,WE(%,%)«
A, (@)r = (o1 Y1)
Az Lig,Y) = o, Rlo,Y)=1.

A subspace of & is a 5-tuple &, =(F , ,LI1} %3, L, R) such that #, < &,
I,L,Re#, and % is closed under the operations o, II. Of course, any
subspace of & is itself an OS.

We give several examples of OS to illustrate the above definitions.

Example 4.1. The OS & =(#,1,I1, L, R) of example 3.1.

Example 4.2. The subspace ¥, = (F . LTI [ #1.L, R) of the preceding OS,
based on #; = {@/¢:w— w}. In other words, # | consists of those functions
in # which are total.

Example 4.3. Example 4.1 with a pairing scheme I1, L, R modified as follows:

Take (@, ¥)(3s)=q@(s), (@,¥)3s+1)=y(s), (@, ¥)3s+2)1, L=45.3s and
R=/As3s+ 1.

Example 4.4. Let M be an arbitrary infinite set, let J: M?— M be injective
(such a pairing function J exists since M is infinite), and let L,R:M — M
satisfy L(J(s,t)) = s, R(J(s, 1)) = t for all 5, te M. Then take # = {¢/@:M — M},
I'=is.s, <y ill o =y, i = As.@(U(s)) and (@, ) = As.J(g(s), ¥(s)).
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Example 4.5. Example 4.4 with M = w; in particular, one may use the pairing
functions J=4ast.2%2t+1)—1, Ast.(2s+1)2,, Ast.i(s+t)s+t+1)+s
(Cantor’s function) or 4st.2°3".

Example 4.6. The OS of example 3.2.
Assume from now on that on OS & is given. Let @ =clI(I, L, R/~) and o, f§
range over 2.

Proposition 4.1. & =cl(I/40.6L, 16.6R).

Proof. Write 2, for cl(I/20.0L, A8.6R). The inclusion &, € & is obvious.
In order to get @, = @ it suffices to show that whenever o, fe %, then ufie?,.
This can be done by induction on the construction of . If f =1 and e,
then af =xe%,. Suppose that f=p,L and of,€Z, for all aeZ,. Then
af,LeD,, ie afe?, for all 4eF,. The case f=f,R is treated similarly.

Proposition 4.2. For every a there is an n such that «(J, D=1

Proof. If « =1, then a(I,)* =al =1I.

Let o=, L or o =o,R and suppose that the assertion holds for oy, Then
there is a n such that o,(I,I)"=1I, hence a(L,Iy'"'=o,(LI)'=1, which
completes the proof by 4.1.

Proposition 4.3. oL £ iR, aR £ BL (for all o, f: we often omit these words).

Proof. Suppose aL < fR. Proposition 4.2 implies that there are ¢, such
that o = By = I. Multiplying the inequality «L < fR by (¢L,¥R), we get
L < R. Multiplying the last inequality by (R, L), we get R < L, hence L =R,
which is not the case.

Supposing R < AL and multiplying by (R, L), we get oL < fR contrary to
the assertion just proved. This completes the proof.

Consider the alphabet LR. To each word a in it we assign an clement a.
Namely, say that the empty word A represents I and whenever a represents
a, then al, aR represent respectively oL, «R.

Proposition 4.4. Let a,b represent respectively ,ff and x< p. Then a=b
(a and b are graphically identical), which in particular implies « = f.

Proof. By induction on the construction of a.

Let a = A. Suppose that b= b,L. Then = f,L, where b, represents f;.
Multiplying the inequality I < ;L on theleftby R, we get R < Rp,L contrary
to 4.3. The possibility b= b, R is also ruled out. Therefore, b=A=a.

Let a =a,L and a, meet the induction hypothesis. Supposing b= A, we
get a contradiction as above. Suppose that b=b,R. Then o=o,L and
B =B,R, where a,,b, represent respectively oy, B, We get oy L < f,R con-
trary to 4.3. Therefore, b= b, 1, henceox = o, L, f = B,Lwith a,, b, representing
respectively a,, B,. The inequality &; L < f, L multiplied by (I, I) gives oy < fiy,
which implies a, = b, by the induction hypothesis. Therefore, a = b. The case
of a=aR is treated similarly.
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Proposition 4.5. If 3y(xpe @), then L # YR and @R L for all .

Proof. Let y¢ = . Then L = /R implies oL = yyR. Multiplying by (R, R),
we get R = y/R, hence oL = oR contrary to 4.3.

The equality @R =y multiplied by (R, L) gives @L =R, which is not
the case. Thus the proof is complete.

It follows by 4.5 that oL # /R and aR # L for all o, .

Proposition 4.6. pL# 1, @R # .
Proof. The equality @L =1 multiplied on the left by R gives R = RoL
contrary to 4.5. Similarly @R #1.

Proposition 4.7. Whenever gpue¥, then pe.

Proof. The case o =1 is immediate. Let o= o, L and whenever go, €%,
then pe%. Let o= f. Then ou,L= B, hence f = f,L for a certain f§; by
4.5,4.6. Multiplying by (I, I), we get ¢, = f,, hence o€ <. The case of = o, R
is treated similarly.

Proposition 4.8. (I, 1)¢%. Therefore, & is not closed under I
Proof. Suppose that (I,I)=a. Then La= L(I,I)=1I contrary to 4.4.

Proposition 4.9. If (¢, /)2, then ¢,y eZ.
Prool. If (¢, ) = a, then ¢ = Lo and 1 = Ra, hence ¢, yeZ.
Moreover, it follows that

o = (¢, ) = (Let, Ra) = (L, R)a,

hence (L, R) = I by 4.2. It is worth mentioning however that the last equality
fails in some OS, e.g. example 4.3. Therefore, (@, )¢ Z for all @, in such cases.

Proposition 4.10. If /i < A, then m=n.
This follows from 4.4. Consequently. our way of representing natural
numbers in & is correct.

Proposition 4.11. Let n>1. Then k(¢,,...,¢,)=@, for all k<n, while

RH[‘PO} * ey (pn) = (pn'
This is proved by an easy induction on n.

Proposition 4.12. Let gecl(l, L. R/>,II). Then there is a natural number m
and elements @,,..., ¢, such that @, =, for all i<m either ¢;eZ or
0, = (0, @) with k, [ <i, and for all o either ape% or ap = ¢, for a certain
i<m.

Proof. If pe{l, L,R}, then take m =0, @o = ¢.

Let @g...., 0, and W,,..., 1, correspond to @, respectively.

Let ¥ = (p,y). Then take k=m+n+2, z;=@; for i <m, 44 = for
i<nand ¥, .43=y Lot ae@. If a=1, then oy =¥ = Yu+n+2 U a=0,L,
then ay = o, and the induction assumption for @ applies. If &= o; R, then
oy = o,y and we use the assumption for .
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Let ¥ = @y. We prove by induction on i,i <m, that ¢, has the required
properties. If ¢;€2, then the assumption for ¢ yields that either @,)ye% or
@ =; with a certain j <n, whence @ has the required properties. If
0; = (¢, @,) for some k, ! <i, then @ = (@, @) The assertion holds for
both @, @ and we proceed as in the case of y = (¢, ). This completes
the proof.

Proposition 4.12 reflects the intuitively clear fact that cl(I,L,R/°,II) =
cl(Z/10). If {I, L, R} is replaced by an arbitrary subset  of #, then something
weaker but still useful can be proved.

Proposition 4.13.
cl(#/°,11) = cl(#/11, 10.y:0 for all y %).

Proof. Let #* = cl(#/I1, 0.0 for all yy€2). It suffices to show that when-
ever gpecl(%/e,II), then pe®* and @yeB* for all yeR*.

Certainly, all the members of # have this property.

Suppose that ¢, ¢, have the property in question. Then ¢, ¢,€%*; hence
©10,6B* and (¢, p,)eB*. Let yeB*. Then @,y e B*, hence ¢, ¢, eB*. It
also follows that ¢, @*, hence (@, @, W = (@Y, @) e B*. Therefore, both
©,¢, and (¢, @,) have the required property, which completes the proof.

EXERCISES TO CHAPTER 4

The first two exercises introduce new examples of OS which correspond to
examples 1,2 in Skordev [1980], chapter 2.

Exercise 4.1 (Example 4.7). Let M be an infinite set, L, R:M — M be injective
and LIM)nR(M)= . (Such L,R exist since M is infinite.) Take & =
{o/p:M——M}, I=1s.s, o<W iff 9=, @y =as.¥(es)), (p,¥)(L(s)) =
@(s), (@, ¥)(R(s)) = Y(s) and (¢, ¥)(s) T otherwise. Prove that & = (#, 1L L, R)
is an OS.

Hint. Follow the proof of 3.1.

Example 3.1 is a particular instance of example 4.7 with M = o.

Exercise 4.2 (Example 4.8). Let M,L,R,I be the same as in the previous
exercise. Take # = {@/@:M 2"}, o < ilf Vs(op(s) < §/(s)) and introduce
o, I1 as above. Show that & = (%, 11, L,R) is an OS and the OS of example
4.7 is a subspace of it.

Here # consists of unary partial multiple-valued functions which can also
be regarded as binary relations, i.e. # = {¢p/¢ = M?}.

The following exercise establishes the independence of the axioms A,,
A A,

Exercise 4.3. Construct a S-tuple & =(#,LIL L,R) to meet all the OS-
axioms but A, (respectively A,, A;).

Hint. Let J, L, R be as in example 4.5 and J(0,0) = 0. (The first function J
suggested there would do.) Take F ={¢/p:0—0&¢0)=0}, I=1is.5,
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@<y il Vs(p(s)=0v @(s)=y(s)), oy =4s.0(Y(s)) and (@.¥)=As.J(@(s),
(s)), then take ¢ = A5.0 and show that ¢ < I but (¢, 1) £ (L, 1). In the case of
A, take an OS and replace IT, L, Rby IT, = Apy (¢, [, ), L, = Land R, = R*.
In the case of A, take I, = Apy.¢.

Exercise 4.4. Show that the axiom A, can be replaced by its particular

instance @ < @, =(I, @) < (I, ®,).
Hint. Make use of the equality

Exercise 4.5. Let & be an OS and %, be obtained from it by introducing
a new partial order, ¢ <, iff ¢ =y. Show that & is also an OS.

It may well happen that a set # admits different operations o, IT satisfying
the OS-axioms, cf. examples 4.2, 4.5. If ¢ is fixed however, then the following
exercise shows that IT is in a sense unique.

Exercise 4.6. Let & be a semigroup and both I1, L, R and I1,, L, R| meet
the axioms A,, A;. Prove that there are elements p, p, such that (¢,¥), =
plo, ) and (@, )= py(p, ¥, for all @, .

Hint. Take p=(L,R),, p; = (L, R}).

It follows by exercise 4.6 that all operations IT to meet A,, A are simul-
taneously monotonic or nonmonotonic, hence the semigroup suggested in
the hint to exercise 4.3 can not be augmented with a pairing operation to
become an OS.

Assume from now on that an OS & =(#,[,11, L, R) is given.

Exercise 4.7. Show that the operations ¢, I1 are non-commutative, I1 is non-
associative and there is an element @ such that Yo =1 for no y.
Hint. LR #RL, (I, R, 1) # ((I,R), I) and YL # I for all y.

Exercise 4.8. Prove the following equalities.

RLR(R?,(LR, RL)*L(I, 1), L)((I, R),L) = L.

R(@R(YR, L, L) (¢, ¥) = (@) *¢p.

. L(¢LR, (WR, WL)(L, R?))*" = (py*)"L.

RL((Ly, R)WR, @(R, L)), oL)(¥, R)(x, R) = ¢ R(L?*, R* Y(x L, R?))(L, I).

o op

Exercise 49. Let K,=(R,L.K,=(LI), { »=46.(L,6R) and %,
(R, K, (Ko}, {K»s ({LP), ({R})>}. Prove that cl({L,R}u%B/°,1I)
cl(ByuqAB)/°). (Of course, (#) stands for {{¥)/ye#}.)

Hint: Use the equalities @=R{@)K,, {(o¥)={op{¥). (o.)=
WIKo(0PK, and (0P =K(@PK,, where Ky=d((R)Ko(RLp
K ) Ko{ L) Ky, Ky = {R?PK (L)) K.

It is possible to consider an algebraic system alternative to OS, replacing
IT by { » and introducing suitable axioms.

([l



CHAPTER 5

[terative operative spaces

The aim of this chapter is to formally introduce the algebraic system of
iterative operative space as the natural framework for the development of a
general recursion theory.

Let & = (#,1,T1, L, R) be an OS. Consider the following axiom.

Axiom pA,. Two additional unary operations {  »,[ ] called translation
and iteration are given such that

£) (pL<{p>R) =<9,

R < Yy &(pLyp, wfry) < t=L{ @)Y <.
(££) (Lolel)<lel,

(. p1) <t=[0lY <.

Taking ¢ = I, ¥, = R, one gets immediately that (@)= u0.(pL, OR) and
Lol = pb.(1, @0).

If the axiom pA, is satisfied, then & is said to be an iterative operative
space (108). The operations ¢ », [ ] are not included in the signature of
TOS because their semantics is unambiguously implied by that of <.,
AL R

For instance, the OS of examples 4.1,4.6 are iterative respectively by 3.1,
3.3. The OS of example 4.3 is also iterative. It will be shown in the exercises
that the OS of examples 4.7,4.8 are iterative, while those of examples 4.2,
4.4,4.5 are not.

Instead of the axiom gA,, we shall use sometimes the stronger axioms
A, pA, or 1A ,. Some auxiliary notions are needed to formulate them. To
begin with, we introduce the notion of inductive mapping inductively as
follows.

{, The mappings I'=10,...0,.0, 1<i<n, and I'=20,...6,.4, ye
{1, L, R}, are inductive.

2. If Iy, I',:#" — & are inductive, then so are I’ = 46, ... 6, T1(015..50,)°
T,(0,,-...,6,) and T'=16,...0,.(T;(0,,...,8,), T2(6y,...,8,)).

3. If T,:#""'—»% is inductive and for all 0,,...,0, the element
uo.T',(8,,...,0,,0) exists, then I' = 10,...0,.u0.T(6,...,0,0) is inductive.

A regular segment is a subset of # of the form {6/x0y < forall <a, nTyesf},
where o = % x #2. A normal segment is a set of the form {6/8y <t for all
{x,tYesl}, where o < #2 In order to state the axiom A, assume that
the element <) = ub.(¢L, 8R) exists for all @ and call simple segments the
sets of the form {8/0y <t} or {8/<8)> <<I)t}.

Axiom pA, (A, yAs). For any n+ l-ary inductive mapping I' and any

lalv]
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6,,...,0, the inequality T'(f,...,0,, 6) < 6 has a solution which is a member
of all simple (respectively normal, regular) segments closed under the mapping
A0.T(0,,...,0,0).

All normal segments are regular since I €%; thus axiom pA; implies axiom
tA,. Further connections between the four u-axioms are established below.
In each particular instance the p-axiom used will be indicated by the corres-
ponding number of asterisks, c.g. the proof of 5.7%* makes use of uA,.

Proposition 5.1. All inductive mappings are monotonic.
Proof. The mappings ['= 6,...6,.0, and ' = 16,...0,. are monotonic.
IfI,,T,:#"— # are monotonic, then so are

F=418;...6,.I'1(0:,...,0)05(0y,...,60,)
and
F=20...0,.(T1(0 10 0 T2(015..-564))

since the monotonicity of =, I1.
Let I',:#"*! —» % be monotonic and

[=70,...0,.40.1',(8,,...,0,,0).
If 0, <t4,...,0,< 1, then
T i0ism ol L (i s Bl b2 Dl M onoas ) ST E e s Tak

hence I(0,,....8,)<T(zy,...,7,) since I(04,...,0,)=pb.T(0,...,0,0)
Therefore, I' is monotonic. The proof is complete.

Proposition 5.2* (5.2*%). Let 6, be the element assumed in the axiom pA,
(respectively pA,, uA,). Then 6, =puf.T'@,,...,0,,0).

Proof. Since I'(0,,...,0,,00) <0, it suffices to show that whenever
I'e,,....0,,7)<rt, then 6 <.

Suppose that I'(6,,...,8,,7)<7 and consider the simple (respectively
normal) segment & = {0/0 < t}. Whenever &4, then

T©,,...,0,,0) <T(By;....0,7) <t

by the monotonicity of I, hence & is closed under the mapping 46.1(0,,.. .,
8,,6), which implies 0,e& by pA, (by uA,). Thereby the proof is completed.

Notice that the element pf.T(#,,...,0,, 0) above is also a least fixed point
of 20.1(0,,...,0,,0) since the monotonicity of this mapping.

It follows from this last statement that each of the axioms pA |, uA,, pA,
ensures the existence of the elements { ¢ > = uf.(¢L, OR) and [¢] = pb.(1, ©B)
for all ¢.

The following two statements show that the axiom pA, implies both (£)
and (££), i.e. pA, implies pA,.

Proposition 5.3*, If Ry <y, and (oL, ;) <7, then {@ ¥ <T.
Prool. The set & = {6/8 <t} is a simple segment. Il Oeé, then

(¢L, ORW = (oL, ORY) < (9L, OYfy) < (oL, 1) < %5
hence { ¢ yeé by pA,. Thus the proof is complete,
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Proposition 5.4*. If (i, p7) <, then [o]¢¥ <.
Proof. The set & = {#/0y <t} is a simple segment and if fe&, then

(L @O0 = (&, o) < (Y, 07) < 7.

Therefore, [¢]eé& by pA,, which completes the proof.
Our next aim is to show that gA, implies pA .

Proposition 5.5. L{¢» =¢L and R{p>»={p>R.
This follows from the equality {¢ ) =(pL, (@ > R).

Proposition 5.6. n¢{ ¢ > = ¢ for all n.
Proof.

@) =LR"(@) =L {@)R"=@LR"= @A

Proposition 5.7%*, I ¥ n(eay < piig), then (> < {pro.
Proof. Consider the normal segment

&={0/¥nOR" <<{p)R"s)}.
If @&, then

(0L, OR)R™) = (@i, OR"™ ') < (po, {p )R"" "0)
=(pL,{p>R)R"a ={p)R"0,
hence {@)eé& by uA,. Taking n=0, one gets (@ < {p>o.

Proposition 5.8%*. (@ < {p)o ifl Yn(pml < piio)).
This follows from 5.6, 5.7%*.

Proposition 5.9%%. (o> = {pdo iff Ya(pry = pao).
This follows from 5.8%*.

Proposition 5.10%*. All simple segments are normal.

Proof. If & = {6/0y <}, then & is a normal segment. If & = {6/<{0) <
{Iyt},then & = {0/Vn(i < it)} by 5.8*%* hence & is again a normal scgment.
The proof is complete.

As an immediate corollary to 5.10%* one obtains that pA , implies pA,, thus

PAy= A= pA = 1A,.

The sufficient condition (*), given in chapter 18 verifies pA, but not uA;,
hence pA,=>uA;. I conjecture that pA, s> uA, and pAy=>pA,.

The proof of the Normal Form Theorem and the First Recursion Theorem
given in chapter 9 imply that it is sufficient to allow in pA,, uA,, pA; the
mappings A8,6.(8,L,0R), 26,0.(1,6,6) and 16,0.1[6,(1,{8))] only. There-
fore, axiom scheme uA  is equivalent to a single first order axiom, The axioms
1A, uA 4 are second order ones, though the normal and regular segments
we consider will often be introduced by means of countable and effectively
given sets 7.
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It almost always suffices to allow in pA,, pA, just the mappings
A0,0.(6,L,0R) and 160,60.(I,6,0); axiom pA, restricted this way is exactly the
basic p-axiom in Ivanov [1980]. The first version of a g-axiom for OS was
iA5, while uA,, uA, were invented later. (The point (££) was borrowed from
Skordev [1982].)

The requirements of (£) can be restricted to the element (I ), provided the
equality (¢L, 6R) = ¢ has a solution for all ¢.

Proposition 5.11. Let {I) be an element satisfying (£), i.e. (L, (I>R)<{I>
and whenever Ry < ynfr,. (L, 7ry) < 7, then {I >y <1. Let { >, bea unary
operation over % such that (gL, (@) ,R)= {@ >, forall ¢. Then the operation
{ Y=Ae.{I>{p), satisfies (£).

Proof. It follows that

(@L.{@>R)=(oL, {I><0>1R)=(L,{I>R)@L,{@ > R)= I} <> =)

If Ry <y, and (@Lyp,tp) <7, then R<{p) ¥ <<{@) Yy, and (L{p ¥,
tf,) < t; hence {ID< @) <7, i.e. (@ ) < 1. This completes the proof.

Proposition 5.12. L[] =1, R[¢]=¢[¢].
This follows from the equality [o] = (I, p[¢]).

Proposition 5.13. Suppose that axiom pA, is satisfied at least by the mapping
A0.6.(1,0,0) and let { >, be a unary operation such that i{¢p ), = @i for
all n. (In particular, the last equality will hold whenever (gL, { ¢ > R) =<¢>.)
Then axiom puA, and the assertion of 5.7** hold.

Proof. Take o = {(pL? LR?*)),[{(RL,R?*)}>,] and {¢) = 1[a] by defini-
tion. Notice that fioc = (L, n + 2) for all n.

Consider the regular segment

&={0/LO0 <I&Yn(n+10R<n+2[d])}.
If eé, then L{I,00) =1 and

n+ 1(I, )R = icBR = (piiL,n + 2)0R = (@ALOR, n + 26R)
<(gn+1,n+3[6])=(pn+1Ln+3)[c]
=n+lo[a] =n+2[c];
hence [6]e&. We get in particular T[¢]R < 2[c]; hence
(¢L,<¢)R)=(pL,1[¢]R) < (¢L,2[c]) = (¢L?,2)[¢] = Da[c] = T[a] =< ).
Let Ry < ynfr, and (@Ly, tfr;) < 7. Consider the regular segment
& ={6/L0 <I&Vn(n+ 10y < 1)7)).
If 6eé, then
n+ 1(L, 68) = figby = (piL, n + 2)0y = (pALOY, n+ 264)
<(pay, 1" ) < (L, ti™Y) = (oL, v Wi < i,
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hence [a]eé&. Taking n =0, we get 1[o]y <t,ie (@ ¥ < 1. Therefore, (£) is
valid, while (££) follows by the proof of 5.4%*,

Suppose that pay < pat for all n. In order to show that {@ ¥ <{p)7
take the regular segment

&=1{0/LO<1&Vn(n+ 10y <{p>R")}.
If fed, then

1+ LI, 600 = (@AL, n + 2)0 < (@i, {p» R"*'7) < (piir, { p Yy R"* '7)
=(pL,{p>R)R"t={p>R",

hence [o]eé. Taking n=0, we get the desired inequality, which completes
the proof.

It may happen that an OS is iterative but a subspace of it is not, e.g. the
OS of example 4.1 and its subspace of example 4.2. However, the following
statement shows that the axiom uA, is in a sense hereditary.

Proposition 5.14. Let & be an OS, let &, be a subspace of it. Suppose that
& satisfies pA, and the semigroup of & is closed under { > and [ ]
Then &, satisfies A, and is a subspace of & as an IOS.

The proof is trivial. Both (£) and (££) are hereditary.

EXERCISES TO CHAPTER 35

Exercise 5.1. Prove that the OS of example 4.7 is iterative. Writing L,, R,
respectively for L™!, R™ %, show that

{¢y=|JRIL;@LR" and [¢]=J(R,¢)"L;.
Hint. Follow the proofs of 3.1, 3.2.

Exercise 5.2. Prove that the OS & of example 4.8 is iterative and { >,[ ]
can be characterized as in the previous exercise. Show that the IOS of example
4.7 is a subspace of &,

Hint. Follow the proofs of 3.1, 3.2 again.

Exercise 5.3. Let & be the IOS of example 4.7 or example 4.8. Prove that
whenever [:.% —Z is monotonic, then it has a least fixed point which is a
member of all regular segments & closed under I'. Therefore, & is pAs-
iterative.

Hint. Take 6,=sup{l'(8,)/n <&} for all & The increasing transfinite
sequence {0} can not consist of distinct members, hence there is a { such
that 8, =6, ,. Therefore, 0, is a fixed point of I'. Using the fact that & is
closed under least upper bounds, show by transfinite induction that 8.e&
for all & hence 0,€&. (It suffices to consider the sequence {0}, ., provided I'is
continuous with respect to least upper bounds of increasing countable
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sequences. And the inductive mappings are continuous in this particular
instance.)

Exercise 5.4. Prove that the [OS of example 3.2 has the property considered in
the previous exercise.

Exercise 5.5. Prove that if (££) holds, then the axiom ¥ <, =@V < @y,
can be replaced by the weaker one ¥ <y, =Ly < Ljr,, Ry < Ry,.

Hint. Using (££), show that [¢L] < (I, ). The inequality (I, ¢L[@L]) <
[@L] implies both I<L[@L] and ¢L[¢L] < R[¢L], hence I=L[¢L]
and ¢ = @L[@L] < R[eL]. Therefore ¢ = R[@L]. Show that y <, implies
[@L]y < [@L]y, by (££); multiplying on the left by R, obtain @y < @¥/,.

Exercise 5.6. Let & be an OS with @ < iff @ =1. Show that .% does not
satisfy (££).

Hint. Suppose that the equality (I, R) =0 has a least solution denoted
by [R]. However, ‘least’ means ‘unique’ in this space, hence (1, R(I, ¢)) = (I, ¢)
implies (I, @) = [R] for all ¢, which is not the case.

It follows from this last exercise that the OS of examples 4.2, 4.4, 4.5 are
not iterative.



CHAPTER 6

Translation and iteration
lemmas

In this chapter we study the operations of translation and iteration. A new
operation called primitive recursion is also introduced. The independence of
the IOS-operations is examined in the exercises.

Assume that an [0S & = (%, LTI, L, R) is given. Recall that { > = d¢.ub.
(pL,OR) and [ 1=1¢.ub.(I, ¢0), in particular, (¢L,{¢)>R)=<¢p) and
(I, p[@]) = [¢] for all ¢.

Proposition 6.1. Iteration is monotonic.
Follows by 5.1,

Proposition 6.2, [L]=(L]I).
Proof. Using 5.12, we get

[L]=(LLILD=(,1).

Proposition 6.3. a[l]=1 for all n.
Proof. We have O[] =L[I]=1 and

n+ 1[[]=naR[I]=AI[I]=A[I],

which completes the proof.
The partially ordered set # has a least member, namely O = R[R].

Proposition 6.4. O < ¢ for all ¢.
Proof. The equality (I,R(I,@))=(I,¢) implies [R]<(l,@) by (££).
Therefore, 0 = R[R] < ¢.

Proposition 6.5. LO =R0 = 0.
Proof. Using 6.4, we get

LO < L(0,0)=0,

hence LO = 0. Similarly, RO = 0. This direct proof is due to N. Georgieva.

As an immediate corollary to 6.5 20 = O for all xe%. However, the state-
ment V(@O = 0) is not a theorem; it is valid in examples 4.1, 4.3, 4.7, 4.8
but fails in example 4.6.

34
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Proposition 6.6. Op = O for all ¢.
Proof. It suffices to show that O¢p < 0. The equality (@, R(p, 0)) = (¢, 0)
implies [R]@ < (¢, 0) by (££), hence O¢p < O.

Propesition 6.7. [@] =(I, R[p]).
This follows from 5.12.

Proposition 6.8. @ = R[pL].
Proof.
RlpL]=¢L[eL]=pI=¢.

Proposition 6.9, (¢, ) = A[pl*][WL], where A =(R, RL).
Proof.
AloLP1[WL] = (oL*[@L*],R)[YWL] = (pLLWL], RLYL]) = (p, ).

The above equality is due to N. Georgieva and corresponds to a similar
one of Skordev [1982].

Proposition 6.10. x[ox]y = pf.x(4. @f). In particular, [¢]y = ud.(W, @0).
Proof. We have

(W oxloxdv) = x(, oxLox]) = xLox .

Whenever x(, ¢t) <, then (¥, (i, ¢1)) < (. pr): hence [@y ]y < (¥, @7)
by (££). Therefore, y[@yx]¥ < (¥, ¢1) < 1, which completes the proof.

Proposition 6.11. R[ @y = uf. o, 6).

This follows from 5.12, 6.10.

The operation [ ], = Ap.uf.¢(I,0) is a natural alternative to iteration,
replacing (££) by (££),:

oL, [¢],) < [els,
GD(WJ} ET:’[@’]lwir.

Proposition 6.11 gives [¢]; = R[¢]; hence [¢@]=(I,[¢];).

Proposition 6.12. R[@(yL, xR)1p = p0.0(Yp, 10).
This follows from 6.11 and the equality

o(yp, 20) = (YL, xR} p, 0).

Proposition 6.13. [¢]y = R[c], where ¢ = (L, pR).
Proof.

Lol¥ = u0.(4, 08) = R[(YL, oR)]
by 6.10, 6.12.
Proposition 6.14. @[] = T[], where o =(pR?,0,yR?).
Proof. We have

(L¥R*[0]) = (0,y:R?)[a] = Ro[c] = R*[0];
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hence [y/] < R?[¢]. Multiplying on the left by ¢, we get
@Y1 <9R’[0] = Lo[o] =1[0].
Let ©= (L o[¥], [¥]). Then
(Lor)=W, e[y Lyly) =1,
hence [¢] < 1. Therefore, 1[¢] < It = @[¥]. The proof is complete.

Proposition 6.15. [¢y[] = I[o], where o = ((¢R?, 1), 0, xR?).
Proof. To begin with, (I, xR2[¢]) = (0, xR?)[¢] = Ro[¢] = R*[ @] implies
[x] < R?[o]. Using this inequality, we get
W [x ¢1[0]) <(WR*[c], ¢1[6]) = (WR? @T)[6] = Lo[s] = T[],

hence [@]¢/[x] < T[o] by (££).
On the other hand, writing © for (I, [@]¥[x]. [x]) we get

(I, 01) =L (Y[, LTy D, I x[x]) = (L L eLoD¥ [, [x]) =%
hence [o] < 1. Therefore, 1[6] < [¢]¥[x], which completes the proof.

Proposition 6.16. [o[y]]=T[c], where o = ((0, oR?), T, yR?).
Proof. We have (I[¢],¥R*[¢])=(1,¥R*)[c] = Ro[6] = R>*[6]; hence
[¥11[e] < R*[s]. Using this inequality, we get
(I, o[Y11[a]) < (I, pR?*[¢]) = (0, pR*)[6] = La[c] = T[],

hence [¢[y]1] <1[s].
Let t=(I,[o[¥]], [¥1[e[¥1]). Then

(Iot) = (L, oY1 L@ [¥1D), Lo Y11, ¥ [¥Le[¥1])
=(LIeY1], Ly ¥ Dlely]])=r,

hence [¢] < 7. Therefore, 1[¢] < [¢[¥]]. The proof is complete.

Proposition 6.17. Translation is monotonic.
This follows from 5.1.

Proposition 6.18. Translation is injective.
Proof. @ =L<{@>(II).
By contrast, iteration is not injective. For instance, [R] = [R?*], while
R # R? by 4.4. Actually, [R] = (I,0) < [R?]. On the other hand,
(I,R*[R])=(,R0)=(1,0)=[R]

implies [R?] < [R].

Proposition 6.19. If oLy < pLt, Ry < yn), and 1y, < Rz fora certain i, then
{er¥y<<{p>r.
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Proof. We have Ry < iy, and
(@L< p>1¢y) < (pLt, {p>Rr)=(pL.{p>R)t=<{py,
hence <@>y <<{p>1 by (£).

Proposition 6.20. If oLy = pL1, Ry =y, and 7, = Rt for some ¥, then

Cory=<{p>t.
This follows from 6.19.

Proposition 6.21. {3y >={qpf>.
Proof. Takey, =R, p = @y and t = I. Then the equalities ¢ L{y > = @y L,

Ry = <YO>R imply (o> <) = oy ) by 6.20.

Proposition 6.22. If (pL, TR) =1, then (@)= {I)1.

This follows from 6.20.

We get in particular that {¢» is a unique solution to the equation
(oL, 0R) =0, provided {I}» = I. (The last equality holds in examples 4.1, 4.6
but fails in example 4.3.) By contrast, there is no space in which the equation
(I, pf) = 6 has a unique solution for each ¢. Indeed, both [L] and [R] satisfy
the equality (I, R6) =6 by 6.7 but are not equal.

Proposition 6.23. R[{e>]=[{o>]eo.
Proof. Using 6.13, we get

[<¢>Je=R[(¢L.{¢>R)]1=R[{e>]

Proposition 6.24. A[ (@ > ] = ¢" for all .
Proof.

Al{@>]1=LR"[{e>]=L[{p>]¢" ="
The binary operation A= Agy.(o>[{if>] is called primitive recursion.

Proposition 6.25. A, ) = (o YA, ¥).
Proof.

Al i) =< [KY 1 =< I3 [{¥>]1=<{0>AU ).

Proposition 6.26. {I>»A(p, ) = A(p. ).
This follows from the equality {I>{p)> = {p)>.

Proposition 6.27. LA(¢. ) = @, RA(@. ) = A(@, ).
Proof.
LA(@.¥)=oL[{Y>]1=0, RA@.y)=<{p>R[{Y>]
=< [KY> 1Y =Alp, ).

Proposition 6.28. AA(@, ) = " for all n.
This follows from 6.27.
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Proposition 6.29. (¢,y) = BA(L, BA(¢, R))BA(I,y), where B = (LR, L).
Proof.

BA(L, BA(@, R)) BA(I, ) = BA(L,(¢R, 9))(y. I) = (0R, L)Y, I) = (@, ).

Proposition 6.30. If Yy <yy, and (@rt,)<t for some y,, then

Alp.y)r <.
Proof. The inequalities

RICUH =[x <[y 1y, (@LLKYD 1) = (i) <7
imply {@>[{¥>1x <7 by (£).

Proposition 6.31. If ¢y =Lz, Y=y, and w, =Rt for some Yy, then

Alp,y)y = <I)T.
Proof. The equalities

L[y >Ix=ox=Lt, R[KYDTx= [y >Wyx=L[<> T,
and t, = Rt imply (@ >[{y¥>1x=<I>7 by 6.20.
One gets A(o,¥)x =1, provided t is of the form {z, >7,. In particular,

A, ¥)x = Al@y.Y,) whenever Yy =y,
The following result shows that translation is a particular instance of
primitive recursion.

Proposition 6.32. {¢} = A(pL,R).
This follows from 6.31. Take y=L ¢, =R, 1 ={@).

Proposition 6.33. A(@, ) = ub.(¢, Of).
Proof. Using 6.25, 6.27, we get
(@ Alg, UW) = (@, Co Y ML Y W) = (L. (o) RIAUL )
=@y ML) = Ao, ¥).
If (¢, 7¥) < 7, then A(p, %) <t by 6.30.

Proposition 6.34. If (¢, 7)) = 7, then A(g, y=<{I

This follows from 6.31.

In particular, A(g,y) is a unique solution to the equality (¢, ) =6,
provided {I) =1

Proposition 6.35. Let C= A((L3, LR), (RL,R?*). Then aC=(aL,AR)=
(AL, n+ 1) for all n.
Proof.
iC = (L?, LR)(RL, R?)" = (L? LR)(R"L, R =(LR"L,LR**%).

It is worth mentioning that {I»C=C by 6.26. Notice also that C=
A(B?, A7),
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Proposition 6.36. {(p,y)> =C({@),<{¥>).
Proof. The equalities
(L2 LR)({ 92, ¥ 3) = (@, Y)L= L@, Y1),
(RL, R*)({9),<¥>)= ({0}, <¥ )R,
(@, ¥)>R = R<(o.¥)>

imply C({o >, C¥>)=<(¢,¥)> by 6.31.

Proposition 6.37. {[@])=C[{¢)»C].
Proof. We have
(L, o(L? LR)[ (9> C]) = (L, pLC[{9>C) = (L, LLp>C[ {0 ) C)
=(L%, LR)[{¢>C],
hence [¢]L < (L?, LR)[{¢)C] by (££). Similarly,
(R,{@>C(RL,R*)[{9>C])=(R,R{p>C[{g)C])=(RL,R*)[{p>C]
gives [{(p>CIR <(RL,R*)[{¢)C].
Taking ©= (1, ¢[¢]L, (¢ >C[{¢) C]R), we get
(IL,<{e>Cr)=(I,(¢L,{@>R)CT) = (I, p(L* LR}z, { ¢ ) C(RL, R*)1)
=(I, (L, p[9]L), <9 >C(R, {9 > C[{p)C]R)) =T,

hence [{@)>C]<t. Therefore, (L? LR)[{o)C]<[@]L and (RL,R?)e

[{e>C]1<[{e>CIR
We conclude that (LZ&LR][(:(p}C]:[(o]L and (RL,RZ][<(0}C]=

[{@>C]R, which implies C[ (@ »C] = {[¢]) by 6.31.

Proposition 6.38 (First Recursion Lemma). Let o = A((L, ¢2), (YL, R?)). Then

T[] = ub.(L, @bY).
Proof. We have

(W, oy, R*[0])) = (¥, oYL, R*)[0]) = (¥, Ra[c]) = (¥, R*[a]),
hence [y < (¢, R?[¢]). Therefore,

(I, oTle]¥) < (L1, R*[c])) = (I, p2[c]) = (L, 92)[¢] = Da[o] = T[0].
Let (I, ¢7¢r) < v. Then the inequalities

(WL, RP)I, Az, ) = (4, Az, Y)) = (I, Alr, ),
(L, 9201, Az, ¥)), Alz, ¥)¥) = fﬁ ﬂﬂl;;,r‘!), Az, y)) < (v, Alz, Y )
= T
imply a(I, A(z, ¥)) < A(r, ) by 6.30, hence R[¢] < A(z, §) by 6.11. Therefore,
1[¢] < 0A(z, ) = 1, which completes the proof.

Proposition 6.39 (Second Recursion Lemma). Let ¢, = @@/L, ¥R) and 0, =
ub.(1, @ ,6p); the element B, exists by 6.38. Then @8, = ub. ey, x0p).
Proof. We have

o,z 0,p)=@,(1,9,0,p)=@,0,.
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If oy, ytp) <7, then
(L (I, tp)p) = I, 00, xp)p) < (L. Tp);
hence 8, < (I, p). Therefore,
010, < 0,(Ltp) = 0¥, 1) < 7,

which completes the proof.

Proposition 6.40. Let p=A(L, R?), P=A(pR,p), c=A(L*,4) and Q=
uf.0(0R, L). (The element Q exists by 6.39.) Then ¢ ) = P{¢)Q for all ¢.
Proof. It follows that

Lo=1% R*c=0A4* LA*=RL,
hence pa = {I)L by 6.31. Therefore,
pRo=poA={I>LA=_I}R.

The equality 0 = 6(QR, L) multiplied on the left by pR and p gives respectively

pRQ =<{I}L, pQ=0QR.
The equalities

L{pY=@L=L{p)p,R*¢o>=<C@)R*{@)pR?*={@)Rp=R{@)p

imply p<{o@)=<{@)p by 6.31. Finally, we get
pRL@YQ =L @>pRO={p)L=LLo»,
pLoY0=<pypQ=<0)QR, Lo »R=RLop,
hence P{p>Q = @ by 6.31. The proof is complete.

Proposition 6.41. Let D = A(L%, {R)R). Then nD =7 for all a.
Proof.
iD = I((RYR)' = [*(RY"R" = LR"LR".

Proposition 6.42. Let p = C([I]L.R), 0 = D{¢@>p and 1=D{Rpp. Then
ple]=([0¢], p[z]).

Proof. Using the easy equalities

= (LGI‘, RG) = (GCP[G, T}’ T{Ga Rz))s
we get

(1,09(0, 1) [¢]) = (,0a[c]) = (0, ) [a],
hence [0¢] < (0,T)[o]. Similarly,
(1,70, R)[4]) = (I, Ra[a]) = (0, R*)[c]

implies [z] < (0, R*)[a].
On the other hand,

(I, o(1,00[0¢], 1[x])) = (L, 0e(I,0¢[0¢]), (I, [1])) = (I, 0¢[0g], t[])
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implies [¢] < (I,0¢[0¢],t[t]), hence the above two inequalities are in fact
equalities and

plal = (Lplal. Rpla]) = (0, 1)[c], p(0, R*)[0]) = ([D¢], p[t]).

The proof is complete.

Proposition 6.43. Let p= C([I]L,R) and T'=/08.D{08%p. Then ap[[(@)] =
[A@] for all ¢, n.
Proof. The previous statement gives that

p[T(@)]=([0¢], p[T(Re)])
for all @, hence Op[I"(@)] = [0¢]. Supposing nip[ [ (¢)] = [#e] for all ¢, we get

n+1p[T(p)] = Aip[T(Rp)1=[iRe] = [n + 1¢].
This completes the proof.

EXERCISES TO CHAPTER 6

Exercise 6.1. Prove the following equalities.

A= LC[RL]{RY[{L>].
(@.¥)=(RL,R)[yL*][pL].

[o]=T0(O, ¢1), y1)].

@[] =R[((0,y1), pD)].

Lol [x] = R*[(x(0.,T), ¥(0, 1), pR?)].

(o[¥], x[p]) = (oL, xR)[(L?, pR)I[¥].
Lely]]=R°[((R%y¥1),0,0T)]. B
Loly]1]=0TL(((O, ¢(RT, R?)),01), ¥(RT, R?))].
Lol (¥, 011 = R*1[o], where o = ((/p, R*1,0, @p), yp) and
p=(11,01, R?).

J- (@, 0)= pA(R, pAY, L))pA(l, @), where p = (0, 1).

Hint for assertion i. Show that

L0, 0IR?*1[o] < plol, [ol(Y. P11 < R*1[a],
(o] < (L. (W LG )1, 1, D, 1L 01 Lol (- 2) 11

= T e o O

Exercise 6.2 (Second Recursion Lemma, improved). Show that whenever

Yy < xx; and o(x, txy) <7, then (u0. (1, 0Y))y < 7.
Hint. Take o as in 6.38, then pf.p(l,0))=@l[a] by 6.39. Show that

[odx < (. Al Txa )y 24))-

Exercise 6.3. A(o. ) = pfl.(¢, o, B°).
Hint. Writing 8, for u0.(¢, o, 0y*), show that 8,1 < R, by exercise 6.2.

Exercise 6.4. Let G =A(¢L>, (R>). Show that (I C = G(L,GR).
Hint. Show by 6.20 that ¢LYG = (I L, hence (LY(L,GR)= LI C;
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similarly { R)G = GR and (R }(L, GR) = (L, GR)A2. The equality { I ) CA* =
R I3 C completes the proof by 6.31.

Exercise 6.5. Establish the following assertions:

a. P,Qecl(L, (L, KA»/>[ 1)
b. P,Qecl(L, &KLY, «KRP» /e ILL 1)
Hint. Take o = A(L? A), ¢, = {I )06 {I) and prove by exercises 6.3, 6.2 that
¢, = o, hence Q = ufl.¢,(0R, L). Then show by 6.36-6.39 that
P,Qecl(L, KIDC, KLY, KRPD, LAD /. ILL 1)

Make use of exercise 6.4, the equalities (R» =LY KA, A=
17 A% [L]* and 6.9 to obtain assertion a.
Substitute {I>A for A in the above argument to show that

P,Qecl(L, KINC, LKLY, KRPD, I LA /ILL T

The equality (A)=CCIY{(R), (RL)) implies IM)KAPD=
I LCHKIN C(LKR, LRL)), hence

LIDC LI LADeclL, KL, KRM/ILE )
I {C)=C(G(L,GR)) =< GI)(L,GR))

={GHLIPCLLY{GH{RY),
(G)=KLWCIKRMHC]

by

Exercise 6.6. Let J = Ast.(2s + 1)2". Show that $tP =J(s,t) and J(s,1)Q =51
for all s,t.

Exercise 6.7%*. Let J:w? > o and stp = J(s,t), J(s,t)o =3t for all s,1. Show
that @) = LI p{e)o for all .

Hint. Use 5.9**,

Axiom pA, ensures that the element I* = u6.(L, (8> R) exists and has
certain additional properties.

Exercise 6.8%. Prove that

(£} (LA*>R)<I%
IYRY <Y (LY, Y <=1 <7,
C({Ly,PrQ{RY) s t={I*> <.

Hint. Supposing ¢I>Ry < (i >y, and (L, {t)¢,) <1, show that the
simple segment {0/0y <t} is closed under 20.(L,{8)R). The element
o=uf.C({LY, POQ{RY) exists by 6.39; show that the simple segment
{0/¢0> < a} is closed under 40.(L, {6} R).

Exercise 6.9. Let /* meet (£)* and o= uf.C({L),POQ{R}). Prove that
I* = Lo(I, ).
Hint. It suffices to show that (I*»=c. The inequality C({L},
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PLIFYQ{RY)< {I*) implies ¢ < (I*) while, on the other hand, the last
implication of (£)* ensures that {I*) < a.

It is the case that [*=<{I)>=1 in example 4.1 and [*<<{I><1T in
example 4.3.

Exercise 6.10. Let /* meet (£)* and I''F2—=% such that (g, y)=
(. <T(e, ) >1) for all ¢, 1. Show that the operation A* = Ay utl.(p,<{0>)
exists and satisfies the following analogue to 6.30: if {IDyyr<<{y>x.

(. <T)x1) <7, then A*(@,Y)x <
Hint. Take A* = Jgy. [*T(, i) by definition.

Exercise 6.11. Prove that the operation ¢ cannot be expressed in terms of IT,
¢ 5. [ ]and members of %, i.e. there is no expression ¥7(8,,6,) constructed
from 6,, 6, and members of % using I1,{ >,[ ] such that oy =77(¢, )
for all ¢, .

Hint. Suppose there is such an expression ¥". Define Ih(f) =0, lh(aL) =
Ih(aR) = lh(x) + 1. Let 2, be the finite set consisting of L and all the members
of @ to ocour in ¥". Take n> lh(x) for all ®eZ,. Show that if pecl(D/11,
¢ 5[ DN, then th(p) < n. Therefore, L'écl(Zo/IL,{ >,[ 1), which is
a contradiction.

Exercise 6.12. Prove that the operation A cannot be expressed in terms ofe, I,
¢ Yand I L,R.

Hint. Take A" = {x/x=k,...k,&n k..., k,c0} (=2\RZ) and deline
I(I)=0, [h(xA)=Ih(x)+ 1. Show that if @ecl(I,L,R/°,II,{ ), then
InV¥x(lh(x) = n=>x@e.A"). Therefore, ML (I.1))¢cl(l, L, R/, TI,{ 3).

Exercise 6.13. Show that the operation [ ] can not be expressed in terms
of o,I1,A and I, L, R.

Hint. Take .4 as above and show that if g@ecl(l, L, R/, T1,A), then
Vx3y(yxpeA). Therefore, [R]¢cl(I, L, R/>,I1, A).

We give a detailed proof of the following Translation Independence
Theorem since it introduces an important new technique called the unwinding
method.

Exercise 6.14%**, Show that the operation { > can not be expressed in terms
of e, II,[ ]and ILL,R

Hint. By way of contradiction, take 2%\ {I} and suppose {« yeel(l,L,R/
s, I,[ ]). Propositions 6.8, 6.9, 6.15, 6.16 imply that {a)=T1[¢] for a
certain ¢ecl(l, L, R{+,I1). Let m,¢@,...,®, correspond to ¢ by 4.12 and
I > max {k/3i < m(ok = Lo;[¢])}. (The last set is finite by 4.4.)

For each f such that R'¢a > = B[ @] we construct a f, such that f¢o = R
and R'(a) = fi,¢[¢]. It follows from 4,12 that either fpeZ or fo = ¢, for
a certain i <m. The latter implies R'¢a) = folp]= ¢;[¢]; hence ol =
Lo,[¢] contrary to the choice of I. Therefore, fope%. Supposing o =1, we
get al = LBo[¢] = I contrary to 4.4. Suppose that fop = §,L. Then R'(a) =
B.LL@] = f,; hence (o) e%, which leads easily to a contradiction. Therefore,



44 Pure recursion theory on operative spaces [Part B

Bo = B,R for some B,, namely f§, = fo(I, ). It also follows that R'(a) =
Bolel =B Rle] = pele].

Take B, = R'L. Then () = I[¢] implies R'{a) = B[] and we obtain
by the construction suggested above an infinite sequence {f,} such that
B,@ = B+ (R for all n. The regular segment & = {6/Yn(B,R0 < 0)} is closed
under 10.(1, @8), hence [p]eé. Therefore, o1 = LB R[¢] < LO = O, which is
not the case. Thus the proof is complete.

It is worth mentioning that the above argument depends on the following
corollary to the axiom pA ;. For any sequence {x,},

(££E) \ Vala,p = o, R)=0yR[e@] = 0.



CHAPTER 7

Relative recursiveness

In this chapter we introduce several abstract concepts of effective compu-
tability in IOS. The basic notion is that of relative recursiveness, although
the others also play an important role. Some simple properties and character-
izations of these notions are established. Both elements and mappings are
studied.
Given an 10S & =(#,I,I1,L.R), a subset & of % and an element pe#,

we say that

@ is polynomial in & iff

pecl({L,R} v B/-,1I),

@ is primitive in 4 iff

pecl({L, R} v %/, 1L, ),

@ is primitive recursive in 2 iff

pecl({L,R}w B/, ILA),

@ is primitive recursive in 9 ifl

pecl({L,Ryu B/, IL[ T),

@ is recursive in 4 iff

oecl({L, RyuB/-TLL S[ 1

Our notion of prime recursiveness corresponds to the notion of recursiveness
considered in Georgieva [1980].

The elements polynomial (primitive, primitive recursive, prime recursive,
recursive) in & are called polynomial (respectively primitive, primitive recursive,
prime recursive, recursive). For example, the elements A, B introduced in the
previous chapter are polynomial, while C, D, G, P are primitive recursive and
1,0, Q are recursive.

Proposition 7.1. If ¢ is polynomial in 4, then ¢ is both primitive in 4 and
prime recursive in #. If @ is primitive in 4, then ¢ is primitive recursive in
2. If ¢ is primitive recursive in 4 or prime recursive in %, then ¢ is reqursive
in 4.

This follows from the definitions, using 6.32.

Proposition 7.2. If ¢ is polynomial (respectively primitive, primitive recursive,
prime recursive, recursive) in # and # < 4, then ¢ is polynomial (primitive
etc.) in 4,.

This follows from the corresponding definitions,

45
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Proposition 7.3. Lct @ be polynomial (primitive etc.) in 4. If all the members
of # are polynomial (primitive etc.) in 4,, then so is ¢.
This follows by a trivial induction on the construction of ¢.

Proposition 7.4. If ¢ is polynomial (primitive etc.) in £, then ¢ is polynomial
(primitive etc.) in a finite subset of 2.

Proposition 7.5. An element ¢ is prime recursive in # iff
pecl({L, A}uB/o,[ 1),
while ¢ is recursive in Z iff
pecl({L, Ayud/. DL D
This follows from 6.9 and the equality R = LA.

Proposition 7.6. An element ¢ is primitive recursive in {I}uZ iff pecl({R,
B, I}/, A)
This follows from 6.29 and the equality L = RB.

Proposition 7.7. An element ¢ is recursive in 4 iff

pecl({R,B}u®/.{ X[ 1.
This follows from 5.12, 6.29.

Proposition 7.8. If ¢ is primitive in %, then
{@recl({C,P,Q,{L><{R>} <&}/ 1)

(where {4 ) stands for { () /WeB}).

Proof. By induction on the construction of ¢.

If pe{L, R} U, then <@ ye{{L),{R}}u{Z>.

If @,y have the required property, then so do @y, (p,y) and {¢ ) since
oy =L@ <Y L@, ¥)) = C({ @), ¢ )) and L) =P Q.

Proposition 7.9. If ¢ is primitive in {I}u#, then ¢ is polynomial in
{I,C,P,0,{L),{R)Y}u{%).
This follows from 7.8 since ¢ = L{ @ )(I,I).

Proposition 7.10. If ¢ is recursive in &, then

Cprecl({C,P,Q,<Ly Ry} u<#)/IL[ 1)

Proof. We complete the proof of 7.8 by considering one more case. Namely,
whenever @ has the required property, then so does [¢] since {[¢]) =
Cl{e>Cl

Proposition 7.11 (Pull Back Theorem). The following are equivalent.

(1) ¢ is recursive in .

(2) pecl({L,C,P,Q,{L>{R>}u<{&/>,[ 1.
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(3) pecl({L. B, KLY, LAR}o<B>/[ 1)

4) @ecl({L,KCH KLY, KRPu(#)/[ 1)

Proof. The implication (4)=>(1) is immediate. We shall prove (1)=(2)=
(3)=(4).

The implication (1)=(2) follows from 7.10 since ¢ =L{¢[L]; the
operation IT is omitted by 6.9 and exercise 6.1a.

Assume (2). The equalities C={B>*[{A)?], (A4>=L{LA»[L] and
exercise 6.5a give

C,P,Qecl(L,{B}, L), KAR/[ )
which implies (3).
Suppose (3). We have
(B)=<(LR,L)> =C({L>{R},<{L}),
{A>=<(R,RL)) = C({R),{RL}).
Using 6.9, we get

LAY =<CHC(LRMD, KRLY)=LCHCALKRD LZ][LRLY L],

which implies (4) by exercise 6.1a. This completes the proof.
We now construct several primitive recursive elements to be used
subsequently.

Proposition 7.12. Let H = A({I>,{I>). Then nH = {I) for all n.
Proof. H is primitive recursive since {/) = A(L. R). It follows that nH =

I =LT).

Proposition 7.13. G = {a) for all n.
Proof.

G = {L){R)"=(LR") ={A).

Proposition 7.14. Let T=<{C ) C(H,GH). Then minT=(m,q) for all m,n.
Proof.
minT=mCAC(H, GH) = (miH, miGH) = (m (I Y, m i1y H)
= (m,n{Iy)=(m,n)
It is convenient to write { ¢ >, for ¢ and {¢ >, for ¢, Notice that

whenever m <n, then {R>,{¢>,=<{@>.,{R>,. Moreover, §5;...5,{q@>, =
©§,...5, for all n,s,,...,5,.

Proposition 7.15. Let G, = (I} and G,,, = G,{G},. Then mG, = {m ), for
all m, n.
Proof. We have

rﬁGD =m= <”_1>D= PﬁGn-l—l =?ﬁG"<G>“ = <jﬁ'>n<G>n
= <”-TG>n= <<’ﬁ>>n= <P‘F1>,|+1.
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Proposition 7.16. Let D, =D and D,,,=<D,»D{G,)> for n>0. Then
B o Sl = By e s BBy oGy TOF AL 84500y 8o

Proof. Proposition 6.41 gives §D,=5§35. while §...5, D, =
81581 5e10nSar1 =81+ 581+ 5 CSr 1 20Sn1 = 510 Ty 151+ Spra

Proposition 7.17. Let C;=Cand C,,., =¢{C,>Cfor n>0. Then 5,...5C, =
(51 L, & FR) fOr Bl 55500008,

Proof. Proposition 6.35 gives §C, = (57L,5R), while §...5,,,C, 1=
§1+85,CoSy+1 C=(87...§ L, 57...55R)Sp+ 1 L, Sy 1 B) = (578,51 L, 51 5541 R),
completing the proof.

A notion of relative recursiveness for mappings is introduced by para-
metrizing the corresponding notion for elements. Namely, the unary mappings
I' recursive in # are defined inductively as follows.

1. The mappings I'=A6.8and I" = 16y, ye{L, R} U, are recursive in %.

2 U T, T,:% —F are recursive in 4, then so are I'=10.T,()",(0),
I'=10.(T0),T,6), T=10.{Ty(0)> and T = 10.[T"(#)]. In other words,
I':.# — & is recursive in 4 iff for all # the element I'(#) is uniformly recursive
in {#}u%.

To define the n-ary mappings I': %" — % recursive in 4, just take I =
Afy...0,.0, 1<i<n, and T'=48,...0,.4, ye{L, R} U, in the first clause
above.

Proposition 6.9 implies an equivalent definition with 4 substituted for R
in the first clause and the case of IT dropped in the second one. Other
equivalent definitions can be obtained by using 6.29 and (a parametrized
version of) 7.11.

In particular, one may take the mappings [' = A0,...0,.{8,>, 1 <i<n, and
['=40,...0,\0,edq, oA, in the first clause, omitting the cases of IL,{
in the second clause, where #, is a set of primitive elements such that
cl(Bo/>[ 1) is the set of all recursive elements. (Therefore, cl(Bou (B /e,
[ 1 is exactly the set of all the elements recursive in #%.) For instance,
Bo={L, (B, {L), (A>,} would do by 7.11. The set %, may be assumed
finite without loss of generality. Actually,

L, (B (L} {A),ecl(Bo/>[ 1),
hence there is a finite subset #, of #, such that
L, (B> (L3 A ecl(B,/>[ 1)

Therefore, 4, may be replaced by #,.

Notions of mappings polynomial, primitive, primitive recursive and prime
recursive in # are introduced in a similar way, while certain equivalent
definitions are implied 7.5, 7.6. If # = {7, then one has absolute recursiveness,
prime recursiveness etc.

The elementary properties 7.1-7.4 hold for mappings as well. Three pro-
perties germane to mappings follow.
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Proposition 7.18. If Ty:#™ —»# and I'y,...,I",:#F" > F are recursive in 4,
then so is
T =810 0 Tl D0 05 B sns Bl @pssnns Be)):

This follows by an casy induction on the construction of T,

Proposition 7.19. A n-ary mapping I is recursive in i ....,,, iff there is a
m + n-ary recursive mapping I'* such that

e Wl B T Wiz iia BB

Proof. The ‘if*-part follows by 7.18. The ‘only if’-part is proved by a trivial
induction on the construction of T".

Therefore, in studying n-ary mappings it suffices to confine attention to
absolutely recursive mappings. On the other hand, one may consider only
unary mappings when studying the relative recursiveness, because a pairing
scheme TI, L, R for # is available.

Proposition 7.20. Let I':#"— %, n> 1, and
* = 10.7(06,...,n— 26, R"~'6).

Then I' = 40,...0,.T*((0;....,0,)) and T is recursive in £ iff so is T'*.

This follows from 7.18.

The following Transition Theorem shows that all the unary mappings
recursive in & have the transition property established in 6.42 for [ 1.

Proposition 7.21. If " is a unary mapping recursive in %, then there is a
mapping I'* recursive in # such that I'*(6) = (T'(L6), T*(RA)) for all 6. In
particular, al™*(f)) = T'(n0) for all 0, n.
Proof. By induction on the construction of T'.
Let I'=40.{8). Taking I'* = 16.G {8, we get
*(0) = ((L, G{R}){0) =({LO), G{RE}) = (T(LO), T*(RD)).
Let = A0.1, yeB, (B ). Taking I'* = A8.A(}, I), we get
I*(0) = (y, A, 1)) = (U(LB), I*(RB)).
Let I'¥f, I'¥ correspond to I'y, I'5.
If T = 40.T,(0)T,(0), then take T'* = 16.D(T#(8)>I'3(6). It follows that
['*(8) = (L*, D{R> R)<TT(6) ) ['3(6)
= (LT}(0)LI}(6). D{RT{(0) > RT'3(0))
= (I (LA H(LA), DLTH(RY) YT3(RY)) = (T(L), [*(RO)).
If T =/6.[T ()], then take I'* = 10.p[D {T'}(0)) p], where p = C([I]L, R).
Using 6.42, we get
I'*(6) =([LT#(0)]. p[DLRT () > p1) = ([T (LO)], p[DLTF(RO) > p])
=(I'(LB), *(RO)),

which completes the proof.
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Notice that the mapping I'* constructed in 7.21 also satisfies the equality
(IS () = T*(0) for all 0.

EXERCISES TO CHAPTER 7

Exercise 7.1. Let I* satisfy (£)*. Prove that I* is recursive.
Hint. Use exercise 6.9 and propositions 6.39, 6.38.

Exercise 7.2 (Modification Lemma). Let W,L,,R,e# and L, W =1L,
R, W = R. (In particular, whenever I1,, L, R; is another pairing scheme for
F, then W=(L,R), and L, R, satisfy these assumptions.) Taking (¢, ), =
W (@, ) show that &, =(#.1,11,,L,,R;)is an [OS and ¢ is recursive (prime
recursive) in {L,Ry.(L,R);} u# iff ¢ is recursive, (prime recursive,) in
{L,R,(Ly,Ry)}uB.

Hint. Show that { >, = Ae.uf.(@L,L, R),(I,0R,) satisfies (£) by exercise
6.2 and [ ], =4@.(L,R),[w(L, R),] satisfies (E£), then use exercise 4.6.

Exercise 7.3. Assuming (I =1 (cf. the comments to 6.22), show that the
following are equivalent:

(1) ¢ is recursive in #.

(2) @eci({L,P,Q,{L),{R)}u{B)/,IL[ 1)
(3) pecl({L,{LY,,{A,}u{B>/,[ 1)

@) gecl({L,{L)3, {RY3}u<Z)/>,IL[ ]).

Hint. Use 7.11, exercise 6.4, the equality {B>=C({LR)»,{L>) and
exercise 6.5b.

Exercise 7.4, Show that propositions 7.18-7.20 remain valid with ‘prime
recursive’ (or ‘primitive recursive’, ‘primitive’, ‘polynomial’) substituted for
‘recursive’.

The following exercise establishes a Parametrized Transition Theorem.

Exercise 7.5. Let T be a binary mapping recursive in #. Prove that there
is a mapping ['* recursive in 4 such that

*(0,6,) = (I'(6, L0,), T*(0,R0,)) for all 0,0,.

Hint. Let ', = 46.T (L0, RO) and IT'f correspond to I'y by 7.21. Then take
I'* = 100,.T'¥(C(A(0,1),0,)).

Exercise 7.6. Construct a binary primitive recursive mapping A* such that
A*(0,,0,) = (A(LO,,L0,), A¥(R8,,R8,)) for all 8,,6,. Using A¥*, show that
the Transition Theorem holds for relative primitive recursiveness, provided
I is added to the initial elements.

Hint. Take A* = ]6,6,.G(8,, A(D{8,>,D{0,})0,).
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The next six exercises study ‘multiple-valued’ spaces (e.g. examples 4.8 but
not 4.1, 4.3, 4.6, 4.7), in which L, R have an upper bound U. The element U
will make it possible to discribe relative partial recursiveness and Friedman’s
computability by effective definitional schemes. Abstract partial recursiveness
in spaces with elements U is studied in greater detail in Ivanov [1987].

Exercise 7.7. Let L, R < U. Construct an element @ recursive in U such that
n<a for all n.
Hint. Take & =T1[p], where p={U)C(L,R*). Using the incqualities

© = L(g, ¥) < Ulo, ¥) and ¢ < U(p, ), show that i <n + 1 [p] and n+2[p]
<n+1[p], hence i<n+1[p]<I[p]

Exercise 7.8. Show that the following are equivalent.

() LLR<U, U D<L
(2) Ulp, ) =sup{p.i} for all o, .

Exercise 7.9%*%*, Let L.R<U and U(L,I)<I. Construct an element o
recursive in U such that @ = sup,figp for all ¢.

Hint. Take @ as in exercise 7.7. Supposing g <t for all n,*show that
[p1e{8/LO < I1&Yn(n+ 16p < 1)}.

Remark. This exercise ensures that whenever % is a subset of # of the
form {fAg/new}, then @o=sup#, eg @=sup,i, @Al ¢)=sup,e",
@A(@, W)y = sup,py"y etc.

Exercise 7.10. Prove that the following are equivalent.

(1) LLR<U, U(I,LI)<I, LU < UB% RU < UAZ,
(2) aU(p, ) =sup{oup,ay} for all o, @, .

Notice that all the inequalities in (1) apart from L,R < U are in fact
equalities.

Exercise 7.11. Let % be the IOS of example 4.8. Show that the element
U = As.{L(s), R(s)} satisfies condition (1) of exercise 7.10.

Hint. Show that whenever # €% and ¢ = U#, then Yoy = sup {y0y/
Oes#} for all , . Therefore, condition (2) of exercise 7.10 is satisfied.

Exercise 7.12%%*, Let U satisfy condition (1) of exercise 7.10. Construct an
element @ recursive in U such that e = sup,ange for all «, .

Hint. Take & as in exercise 7.7 or, as suggested by N. Georgieva,
o =T[U(L,R?)].

While O is the greatest (and unique) lower bound of L, R in the examples
considered so far, we shall see in chapters 25, 30 that sometimes these elements
have a greatest lower bound V satisfying the additional assumptions
considered below.
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Exercise 7.13. Show that the following are equivalent.

(1) V<L, R I<V(I).
(2) V(p.¥)=inf{@,¢} for all @,i.

The element O does not satisfy (1) since O(I, 1} < I.

Exercise 7.14. Show that the following are equivalent.
(1) V<L,R I<V(LI), VB> <LV, VA*<RV.
(2) oV (@, ) =inf{ap,oy} for all o, ¢, .
As in the case of U, all the inequalities in (1) except V"< L, R are in fact

equalities. However, there is no analogue to exercises 7.9%%%, 7.12***, so one
can only construct greatest lower bounds of finite subsets of F.




CHAPTER 8

Representation theorems

Three theorems on the representability of primitive recursive and partial
recursive number theoretic functions are established in this chapter, providing
a way of incorporating Ordinary Recursion Theory within the general
axiomatic theory.

Let f:w"——w, n>0. An element ¢ weakly represents [ iff 5,...5,0=
f(sy,...,5,) whenever f(s,,...,5,) . An element ¢ represents f iff ¢ weakly
represents f and whenever f(s,,...,s,)T, then §,...5,p = 0. We write simply
85,00 = f(sy4,...,8,), meaning f(sy,...,s,) = O whenever f(s;,....s,)T.

Notice that whenever [ is an extension of g and ¢ weakly represents f,
then @ weakly represents g. Obviously, whenever [ is a total function, then
@ weakly represents f iff ¢ represents f.

The following statement is called the Representation Theorem for primitive
recursive functions.

Proposition 8.1. Let ¥ be a set of partial number theoretic functions; let
% = F and suppose that all the functions in 'V are representable by members
of 8. Let f be a function primitive recursive in . Then there is an element
@ primitive recursive in & such that ¢ represents f. In particular, all primitive
recursive functions are representable by primitive recursive elements.

Proof. By induction on the construction of f.

1. If f = 15.0, then take @ = {(0) H. It follows that 50 =0sH =0{I>=0
for all s.

2. If f=14s.5+ 1, then take ¢ = R. It follows that §¢ =5§R=s+1 for
all s.

3. Iff = 4s;...5,.5, | <i<n,thentake o = H"'G,_,H'*. It follows that

T R T s s ] i—1
Sl...SH(P:bl...S{'GI‘_]H‘ —‘5,:51,..35._IHI

=§.

4. If fe¥, then f is represented by a member of #.
5. Let hbe m-ary, g,,...,g,, n-ary, their representing elements y, ,,...,%,, and

.fl = ’131 "'Sﬂ'h(g]{sl’""SH)?""gm(slﬂ‘"}Sﬂ)}'

Then take @ =D, (Y >,... D W1 >y The element ¢ is primitive
recursive in y, t,,....¥,, and

510 5@=5...5V1...5... 5,0,
hence ¢ represents f.

53
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6. Let h be unary, g be ternary,ltheir representing elements y, i and
fs0)=his), f(s.t+1)=g(stf(s1).
Taking ¢ = D*(RA(CT Y, (1D, D2))>Alx ), we get

0 =0KI(KIY.Dy)y =51 St+19=5t+ 11, Dy) 2™
= SISH(CT ), Do)+ y'yy = Ststopy.
The element ¢ is primitive recursive in . and an easy induction on t shows
that ¢ represents f. This completes the proof.
Throughout proposition 8.1 and its proof ‘weakly represent’ can be sub-

stituted for ‘represent’.
Two Representation Theorems for partial recursive functions follow.

Proposition 8.2. Let ¥ be a set of partial number theoretic functions, % € &
and suppose that all functions in ¥ are weakly representable by members
of . Let [ be a function p-recursive in ‘P. Then there is an element ¢
recursive in 2 which weakly represents f. In particular, all the general recursive
functions (i.e., total partial recursive functions) are representable by recursive
elements.

Proof. We complete the proof of 8.1 (weak representability version) by
adding one more case.

7. Let g be n+ l-ary, let y weakly represent g and

[ =Asy...8,. ut(g(sy,..-» S 1) = 0).
Taking ¥, = ¥(L, [I]R), p = G, H" (p represents As; ... 8,4 1.Sa+1) Y,=D,,,°
vy Yut+1Cn+1(pl? R?) and o = R[Y,], we get
Spev Balfy = 5-‘-5‘:?#’1[3:---S:I_Ls-Q-‘-S;f_R](PLZ,Rzl
= 5. S, (T2, 5. .. 5+ 2);
hence
5500 =5...50,(IL,5...5t + o).

Take ¢ = T[¢]; this element is recursive in Y. Suppose that f(s,...,s,) =t
Then g(sy,....5,1) ] for all r <1, g(sy,...,8,,7) >0 for all r < ¢, while g(v;,..,,
s,,1) = 0. Therefore, §;...5,tY, = L and s_l...s';r_!pl = R for r <t; hence

5o =581...5t +10o
for r < t. Finally, it follows that
= §...500[0] =5...5t0[0] = §... 50 (L, 5.5 + 10)[0]
=tL[d] =1,
which completes the proof.
Proposition 8.3***, Let ‘P be a set of partml number theoretic functions, let

# < # and suppose that all functions in ¥ are representable by members
of #. Let [ be a function u-recursive in '¥. Then there is an clement ¢ recursive
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in % which represents f. In particular, all partial recursive functions are
representable by recursive elements.

Proof. Using the proofs of 8.1, 8.2, it suffices to complete point 7.

Let g, f. ¥y ¥, o, @ be the same as in the previous proof and
f(s;...,8,)T. We have to show that §;...5,¢ = 0. There are two possibilities.

a. There is a i such that g(s,,...,s,,1) T, while g(s,,...,5,./) >0 for r <. It
follows that 57...5,1Y, = O; hence

i =T GO LS 5+ La)[o] = 0.

b. g(sy,...,8,7) > 0 for all r. Therefore, 5 ...5,7), = R for all r; hence

5.5, = 5. .50, (FI2, 5. .5r+2)=5§...5r+ 1R
for all r, which implies 57...5;0R[¥/,]= 0 by (£££). We get
5. 50=8..51[0]=§...500lc] =0[c] =0,

which completes the proof.

Propositions 8.1, 8.3*** are reversed in the exercises to ensure that
whenever a number theoretic function is representable by a (primitive)
recursive element, then it is partial (respectively primitive) recursive.

While it is shown in the exercises below that the functions representable
by prime recursive elements are quite trivial, all partial recursive functions are
representable by elements prime recursive in several initial ones, such as
C,P,0,{L>,{R>. (The latter assertion follows by 7.11, 8.3***)) Moreover,
an examination of the proofs of 8.1-8.3*** shows that the resources of 10S
are only partially employed. The properties of IT,[ ] used are 0(e, ¥) = o,
n+1(p,) =iy, 0[@]=1I and n+ 1[¢] = fig[p] together with (£££) in case.
Instead of { ), it suffices to have an element ¢, such that §;...5,¢,= @5;...
5 for all sy,...,s,. (If n>1, then @,=P" '¢,0" ' would do.) Therefore,
representability of partial recursive functions could be established in certain
simpler algebraic systems. However, we shall not pursue further represen-
tability results since the theorems given above are sufflicient for our
present purposes.

EXERCISES TO CHAPTER 8

Exercise 8.1. Let J:w” — w be injective and partial recursive. Show that there
are recursive elements p, ¢ which correspond to J in the sense of exercise
6.7**, i.e. 5tp = J(s,t) and J(s,t)o =5t for all s, ¢.

Hint. The existence of p follows by 8.2. Let f; = As. W, (ut(J (W o(0), ¥, (1)) = 8)),
i=0,1, where v, i, are the inverses of Ast.2°(2t +1)— 1 considered in
chapter 2. Take o,,0, to weakly represent [y, f, by 8.2, then take
g=D{0,)0;.

It should be mentioned that the existence of elements p, o which correspond
to the Cantor’s pairing function was assumed as an axiom in an earlier
version of 10S. However, D. Skordev proved that the existence of such
elements follows from axiom uA,;.
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Exercise 8.2%**, Let U satisfy condition (1) of exercise 7.8, ' be a set of
partial number theoretic functions representable by members of 4 = # and
f be partial recursive in P. Show that f is representable by an element
recursive in {U}uA.

Remark. By definition a n-ary function f is partial recursive in ‘¥ iff there
is a n + 2-ary function g primitive recursive in ¥ such that f(s,,...,s,) =t iff
Im(g(m,t,s,,...,5,)=0). If ¥ consists of total functions, then f is partial
recursive in W iff f is u-recursive in ‘P. In particular, f is partial recursive
iff f is w-recursive, which enabled us to introduce the partial recursive
functions via Kleene's definition given at the beginning of chapter 2. However,
in general the notion of relative partial recursiveness is broader than the
notion of relative p-recursiveness. (Cf. Myhill [19617, Skordev [1963].)

Hint. Let g be a »n + 2-ary function primitive recursive in ¥ and f(sy,...,
s,) =t iff Im(g(m.t,s,,...,s,) =0). Take ¥ to represent g by 8.1, a recursive
element ¢ such that {ko/kew} = {tm/t,mew} by exercise 8.1, and the element
@ of exercise 7.9%** Show that (@a{D>G) y[R] represents f.

The next two exercises show that the unary functions representable by
prime recursive elements are exactly those satisfying one of the following
conditions.

(1) 319n(g(l+ n) = g(l) + n).
(2) 33k > 0¥n=l(gn + k) = g(n)),
ie. 313k >0V n(g(+ n)=g(l + rem(n, k))).

Notice that while all such functions are primitive recursive in 1s.T, there are
primitive recursive functions which satisfy neither (1) nor (2), e.g. 4s.2s.

Exercise 8.3. Show that if g satisfies (1) or (2), then it is representable by a
prime recursive element 1.

Hint. Let g(I + n) = g(I) + n for all n. If g(I) |, then take = (9(0),...,g(l— 1),
RIWY; if (1)1, then take ¥ = (g(0)....,g(I— 1),0).

Let g(l + n)=g(l+ rem(n,k)) for a certain k>0 and all n. Then take
¥ =(4(0),...,g(— 1), R(g(L,...,g(l + k= 1) L, R)]).

Exercise 8.4%**, Prove that whenever a prime recursive element  represents
g:w——wm, then g satisfies either (1) or (2).

Hint. We sketch a proof based on the unwinding method. There is a
polynomial element @ such that ¥ =T[¢]. Let m,¢q,..., ¢, correspond to
@ by 4.12. If {I/T # O} is finite, then ¢ satisfies both (1) and (2). Otherwise,
take m + 2 distinct members lg,...,1, .+ of this set. For each i <m + 1 start
constructing a sequence f3; g, By.1,...such that f; , = R"Land Ry = f; ,0[¢].
By proposition 4.12, either f; 02 or f,,¢ =@, for a certain m; <m.
Supposing f;,,¢ = I, one gets [y = I contrary to the fact that y represents
g. If B, .0 = PR, then take B, ., =p. If B, ¢ = PL for certain i,n, then stop
constructing all the sequences. If f;,0 = @,,, then stop constructing the
i-th one.
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No sequence could be infinite since Yn(f;,@ =f;,.,R) would imply
[y = O by (£££) contrary to the choice of [,

If B;.0=BL for certain i,n, then R'ftg_= B, hence Tal = LS. Therefore,
B = R#" which implies I, + nyy = iR9™ = g(I,) + n for all n, i.e. g satisfies (1).

Finally, one may get m,...,m,_; <m such that R =g, [¢] for all
i<m+1, in which case m; = m; for certain i #j < m+ 1, hence R" = R%}
and g satisfies (2). The proof is complete.

Similarly, the n-ary functions representable by prime recursive elements
can be shown to compose the class ¥ introduced inductively as follows.

1. If g is unary and satisfies (1) or (2), then ge'P.

2. If g is n+ l-ary, n >0, there are k >0 and ! such that is,...s,.g(s,...,
spi)eY, i<l+k—1, and g(s,.....5,.8 + k) =g(s,.....5,,5) for all s>, then
ge'¥.

Of course, all such functions are primitive recursive in As.7T.

Exercise 8.5%**. Prove that whenever [:w"——w is represented by a
recursive element ¢, then f is partial recursive. (If necessary, make use of the
Normal Form Theorem 9.3 established in the next chapter.)

Hint. The unwinding method helps once again. Take a primitive element
i such that ¢ = T[] by 9.3. Fix a construction of i and for all  introduce
a set Sub(of) € Z (‘the sub elements of m)/’) as follows.

Sub(af) = {af},
Sub (o, ;) =W {Sub(Bi,)/peSub ()},
Sub(I(y,¥2)) = Sub(i;)wSub (i),
Sub(oL(ry,¥,)) = Sub(a, ),
Sub(xR(Y1,¥,)) = Sub(ey,),
Sub(I{y, )= {pi/peSub(,)&new},
Sub («L{y )= {BL/BeSub(n),)},
Sub(aR Y, ») = {BR/BeSub(aly, )}

Notice that for all « and feSub(xy) there is a ye% such that yo) = f.
Moreover,

VjeSub(ap)(fp < fo)=ap <upo.

Given Sy,...,5,, take wo=5...§1, Ho={0e}; &+ ={Subl(ff)/
oiResf;} and o = u.e/,. An easy induction on i shows that Vae.s/3
Yyoo[] = a[y]), which in particular gives I¢.f since yu,[y¥] =[] would
imply the false equality Lys§;...5,0 = 1.

In order to compute f(s,,...,5,) start generating the members of .o/
consecutively. There are two possibilities.

First, one may get «=o'L for a certain aes/. There is a y such that
vyl =a[y]=0o; hence 3...5¢0#0. Therefore, [(s5y,....s)] and =
f(s1,...,8,) is effectively derived out of « since yr=o. The computation
terminates.
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Secondly, the process may fail to terminate if o=«'R for all aee, in
which case one expects that f(s;,...s,)7. Actually, consider the regular
segment & = {ONVaco/ (0L <a[y])}. Let Heé and weof. Then ol YH)L=
o R(I, 0L = o' yBL. Tt foliows that o'WOL < o'[y] since BOL < L] for
all fleSub(eiy). Therefore. o, yO)L<alyf]; hence [W]e& by pA, In
particular, o[y ]L<ao[¥] implies §..5p¢2, e f(s,...5,)7. This
completes the proof.

The corresponding result for primitive recursiveness is to be found in the
exercises to chapter 22.




CHAPTER 9

Basic theorems of recursion
theory

Some standard theorems characteristic of Recursion Theory are established
in this chapter: a Normal Form Theorem, First and Second Recursion
Theorems, an Enumeration Theorem.

We begin with several normal form results throwing light on the structure
of the recursive elements and mappings. In order to give more precise
formulations we introduce the following special kinds of elements polynomial
or primitive in a subset & of #.

An element ¢ is strictly polynomial in 2 iff

pecl({L, R} wB/40.0L, A0.0R,TI),
which by the distributive law is equivalent to
pecl(cl({L,R}w B/i0.0L, 40 .0R)/II).

Of course, all such elements are polynomial in %, while 4.1, 4.12 imply that
all polynomial elements are strictly polynomial (in ).

Let a finite set %, of primitive elements be fixed as in chapter 7 such that
cl(#By/>,[ 1) contains all recursive elements. An element ¢ is strictly
primitive in 4 iff ¢ is strictly polynomial in %, {# ». Notice that whenever
¢ is strictly primitive in 2, then so are @L, gR. All polynomial elements are
strictly primitive (in ¢¥). It is also immediate that all the elements strictly
primitive in # are primitive in %. However, it can not be claimed that all
the elements polynomial (primitive) in # are strictly polynomial (respectively
strictly primitive) in & for all %; relevant counterexamples will be given in
the exercises to chapter 21.

Proposition 9.1. Let ¥ = % and @ecl(€/>,[ ]). Then there is an element o
strictly polynomial in % such that ¢ = I[¢].

Proof. We first prove by induction on the construction of ¢ that ¢ = p[c]
with certain p, ¢ strictly polynomial in %.

If ¥, then ¢ = R[¢L] by 6.8.

Let ¢ =p[o] and y = p,[5,]. Then

oY =pI[((p,R?¢1),0,0,R%)]

59
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by 6.15, while
[¢]=T1[((. pR?,1,0R%]

by 6.16.

Now let @ = p[o] with p, ¢ strictly polynomial in €. Then ¢ = 1[(pR%0,
aR?)] by 6.14, which completes the proof.

The following is a slightly modified version of the Normal Form Theorem
for elements prime recursive in 4 established in Georgieva [1980] and already
used in the hints to exercises 6.14%%%, § 4¥%%

Proposition 9.2, If ¢ is prime recursive in 4, then ¢ = 1[¢] with a certain ¢
strictly polynomial in #.

This follows from 7.5 and 9.1, taking & = {L, A} U %.

The following assertion is called the Normal Form Theorem for elements
recursive in 4.

Proposition 9.3. If ¢ is recursive in #. then ¢ =1[¢] for some o strictly
primitive in 2.

This follows from 9.1, taking ¥ = B, (% >.

We observe a curious phenomenon, namely, a strict stratification of the
initial operations of an 10S. They are separately ordered as follows: translation,
multiplication (right), pairing operation, iteration, multiplication (left). For,
the Normal Form Theorem shows that the elements recursive in 4 can be
constructed in a few stages, with different operations used in each of them.
In the first stage members of 4 arc taken and ¢ ) is applied to each of
them once. Secondly, elements from %, are allowed and the operations
A0.0L,26.0R are applied repeatedly. At the third stage IT is applied repeatedly.
After that [ ] is applied just once. Finally, the elements so obtained are
multiplied to the left by LR.

Certain modifications of 9.2, 9.3 can be obtained by applying exercise 4.9
to the element o, stratifying the initial IOS-operations in another way.

Analogous normal form theorems in Ordinary Recursion Theory and the
theory of Skordev combinatory spaces show that it is sufficient to use the
least number operator, respectively the operation iteration just once.

The following Normal Form Theorem for mappings recursive in 4 is an
analogue to that of Skordev [1978].

Proposition 9.4. If I is a n-ary mapping recursive in #, then
['=20,...0, 1[o(I,<0,),...,<0,7)]

for a certain ¢ strictly primitive in #.

Proof. Throughout this proof p will stand for (1, {8, ,...,{8,>). First we
prove by induction on the construction of I' that I' = 40, ...0,.a[yp7] for
certain i, T recursive in 4.

Let T=40,...0,.¢0,5 1<i<n If i<n, then T=46,...6, R[ipL]. If
i=n, then I'=20,...0,.R[R"pL]. ;
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Let T'=40,...0,., veBy{B>. Then I =46,...0,.R[YL*p].
Suppose that ['y =40,...0,.0,[W,pt;] and T, =10,...0,.0, L[, p1,].
If T'=404...0,.T(0,...,0,)5(8y,...,8,), then 6.15 gives I =46,...6,.

o, 1[¢], where

g= {(QZRZ\ d’lptlT}q Gs prTZRZ] == ‘i’:‘(l’: <Hl >6: <81 >T- LB ( Hn>GJ <HM>T)T3

= 'JBS(I=D<91 >2sT<81 >2:‘--:ﬁ<9n>2=T<9n>2)T3
=Ya(1.{01 2 (020250, <272
=W4(L, PRCO, ), ..., PRCO DI, Q) =YpT

with certain y, T4, Wby, Y, T recursive in i, 1,05, 75
If=40,...0,.[T,(0,,...,0,)], then 6.16 gives ' = A0,...0,.1[¢], where

g ((Gﬂle]- Ly IPTIRz} =ypt

with certain W, T recursive in ,, 7.
Now let I'=40,...0,.a[Wpt] with ¥, t recursive in 2. There is by 9.3 an
element ¢, strictly primitive in 2 such that ¢ = 1[¢,]; hence

yor=1[e,Jpr =2[(prL, ,R)]

by 6.13. It follows from 9.3 and exercise 6.1d that L. = R*[,] with a certain
¢, strictly primitive in 4. Therefore,

ypr=2[(pR% ¢, RL)[9,]]1=21[0]
by 6.16, where
o =((0,pR* ¢,R2),1.0,R*) = (3. PR*, @), 05)
with @3, @4, 5 strictly primitive in Z. It follows from 6.16 that I'=
Afy...0,.a1[e,], where
a4 =((0,23), 1, 5R2] ={Ps Cﬂvs(Q’wPR&a‘Pg}a@w)

with @g,...,0, strictly primitive in 2. Finally, we get I' =10,...0,.1[0,]
by 6.14, where

6, =(23,0,0,R?) = pp

with a certain ¢ strictly primitive in %, using the equality (8> R = R{8).
This completes the proof.

In particular, one gets I' = A0.1[ (I, (f#))] whenever T is unary.

Three modified versions of the last normal form theorem follow.

Proposition 9.5, If I' is a n-ary mapping recursive in %, then

r=-}ugl-A-Gu—T[(PU'<lj;1>1-'-a<¢’m>s<01>="'|<9n>]]

with certain ,,...,¥,€% and a strictly primitive .

Proof. The mapping I is recursive in a finite subset {i/,,...,,,} of . Let
™ correspond to " by 7.19. Applying 9.4 to the recursive mapping I'*, we
get the desired normal form of I
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Proposition 9.6. If I is a n-ary mapping recursive in 4, then
r = 4181 ad ,GR.T[QJ(I;<{81, R :8!1)>}]

with ¢ strictly primitive in 2.
Proof. Let T'* correspond to I' by 7.20. Then we get the desired normal
form by applying 9.4 to I'*.

Proposition 9.7. If I is a n-ary mapping recursive in 4, then

L= j~'91»<-B;I-T[(P“;((wp"-:'j/nasglv"iﬂn)})]

with Yy, ...,¥.€% and a strictly primitive ¢.

This follows from 7.19, 9.6.

The next statement is an improved version of the Normal Form Theorem
for unary mappings prime recursive in Z established in Georgieva [1980].
First, however, we make a definition. To cach such mapping I assign a
natural number ¢(T') viz., the least n such that I has a construction in which
the clause with 40.0 occurs n times. Such a ‘complexity’ could also be
introduced for unary mappings recursive, primitive recursive etc. in #. Notice
that in the case of recursiveness ¢(I') < 1 by 9.4.

Proposition 9.8. Let I be a unary mapping prime recursive in Z and ¢(T') = n.
Then

=160.T[p(,64,...,0n+3)]
with a certain ¢ strictly polynomial in %.

Proof. To begin with, we prove by induction on the construction of I’
(the clause /.6 assumed to appear n times) that

I s lﬂﬁ[ﬁ’{fs Bal! waleiy Hﬂ")]

with a certain i polynomial in 2.

If I' = A0.0, then T’ = A0.R[R(I, OL)].

If =40y, ye{lL, A} U, then I = A6.R[YL].

Let T,=A0.a[y,(L.60y.....00)], T5=216.p0p5(1,6B;,....66)] and
I'=26.T (6 ().

Using 6.15, we obtain
I'=10.2'TY(I, 0, ..., 00 )]

with i polynomial in y, .

The case of iteration is treated by means of 6.16.

Now let ' = A0.a[ (I, 02, . .., 0a,)], where i is polynomial in 2. It follows
from 9.2 that ¢ = T[¢,] with @, strictly polynomial in %, hence

W, Oy, ..., Ba,) = 1[0 1, Bay, . .., Ba,) = 2L((L, o, L,...,00,L). ¢, R)]
by 6.13. We get I' = A0.«1[c] by 6.16, where

o= ([ﬁs a’)s T) (2, 60-'1_2-9 s e Iani)! ﬁDpRa) = (@2: ¢"39 ((Pq., Bﬁp Ay 9.8")’ 'Ps)
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with @,,...,@s strictly polynomial in 4. Let t=(f,,...,f,, I). Then

o= (92R", 93 R", (@, R", 60,...,0n —1),0sR")r.

Substituting R[zL] for T and using exercise 6.1h, 6.14, we get the desired
normal form. The proof is complete.

In particular, one gets I' = A0.1[¢(I,64)] whenever ¢(I') = 1. A normal form
I'=8.1[¢(I, #R*)] can also be obtained in this case.

The assumption ¢(I')=n above can obviously be replaced by ¢(I') < n.
Moreover, 9.8 can be generalized to n-ary mappings, n> 1.

It is also worth mentioning that the proof of 9.4 produces an element ¢ such
that for all #,,...,6, the element ¢(I,{8,>,...,{0,>) is uniformly strictly
primitive in {f,,...,0,} U, while in the case of 9.8 ¢(I,04,...,0n+3) is
uniformly strictly polynomial in {#} w2. The elements ¢ in 9.4-9.8 can be
also modified by means of exercise 4.9.

While the natural concept of inductiveness was introduced at the beginning
of chapter 5, the notion of recursiveness was taken as fundamental and has
been regarded as central so far. We are now going to justify this by showing
that the class of all inductive mappings is identical with that of all recursive
ones. The following statement is the easy half of such a justification.

Proposition 9.9. If a mapping [ is recursive, then it is inductive.

The proof is by induction on the construction of I', making use of the
simple fact that composition of mappings preserves their inductiveness.

It should be mentioned that the desire to obtain 9.9 was the only reason
for taking A6,...6,.4, Ye{l, L, R} among the initial inductive mappings, for
otherwise it would only follow that for every n-ary recursive mapping I” there
is a n+ 3-ary inductive mapping ['; such that I'=460,...0,.T'{(I,L.R,
By,....0,).

On the other hand, all inductive mappings turn out to be recursive. To
ensure this one should prove that the u-operation preserves recursiveness,
i.e. whenever [:#" ! = & is recursive, then so is A8,...0,.u6.T(6,.....0,.0).
In other words, one needs the First Recursion Theorem. In fact, propositions
6.38, 6.39 were the first steps toward such a theorem and we are now able
to complete its proof in two final steps, using axiom pA, in the latter.

Proposition 9.10 (Third Recursion Lemma). The element pb.o[y(I, 0x)] exists
and is recursive in ¢, , ¥ for all @, ¢, 3.

Proof. We show that the element in question equals @R*1[c], where g =
Aloy, 05), 03 = (1T, R*T,0, (11, pR?2)). 0, =(0L, R?).

Using 6.13 and exercise 6.1i it follows that

oI, oR*1[ax)] = o[¥(0, pR*D)[(x0,6R)]]1 = ¢R*1[(0,,00,)]
= @R*T[a].
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Suppose that @[Y(l,tx)] <t Take p=[¥(L )], p1=Alxp.p.p)1p0).

Then

ay(1, py) = (xp. p. LY(p, 0pxp)) = (zp, p. LWL, @p)p)

<(xp, p: LY(L,t)p) = (xp. p. p) = Lpy,

oo, py) = (xp. prxp) = (L p1)xp
and p,yp = Rp,; hence o(l,p,) < p, by 6.30. Therefore, R[c] < p; by 6.11,
which implies

@pR*T[a] <pR*0p, =pp <.

This completes the proof.

Proposition 9.11. If T is a unary mapping prime recursive in % and ¢(I') < 1,
then the element u6.I(0) exists and is recursive in 4.
This follows from 9.8, 9.10.

Proposition 9.12* (Fourth Recursion Lemma). The element u0.o[@ (1. {6>)]
is recursive in @, for all ¢, .

Proof. The element 6, = pf.@[(I, (#>)] exists by 52% It remains to
show that it is recursive in o, .

Take @, ={@>C, ¥, =y >C(CL,PR) and y, = QC. The element ¢, =
ub.o, [, (I1,60x,)] is recursive in ¢,,,, %, by 9.10, hence it is recursive in
o, . Using 6.37, 6.40, we get

ColY(I, {03)1> =< CLLY Y C({I),{8>,)C] =0, [{Y>C(C, PLO>00)]
=@ [ (1,05 x)]

for all 6. It follows in particular that

(00> = o[¥(1,<0: )17 = @1[¥1 (I, {0 x1)T;

hence #; < {8,>.
On the other hand, consider the simple segment

E={0/{0><08,}={6/{0> <{I>8}.
If 6eé&, then

oYL C03)1) = o, [¥, (1,05 7)1 < @4 [, (I, 0,%,)1 = 6y,

hence O,e& by uA,. Therefore, (f,>=46,, hence 0,= LO,(l,1), which
completes the proof.

We call the technique used above the translation method since in order to
solve the equality @[y(I,{0>)] =0 we have transformed (‘translated’) it by
means of { ) into the more tractable form ¢, [\f,(1,0x,)] = 0.

The following statement is called the First Recursion Theorem, being
actually an analogue of theorem XXVI of Kleene [1952] and the theorem
proved in Skordev [1979].

Proposition 9.13*, If T" is a unary mapping recursive in 4, then the element
uB.T(0) is recursive in 4.
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This follows from 9.12* since I' has a normal form AQ.¢@[Y(l, {8>)] with
@, recursive in % by 9.4, Next, we give a parametrized version of the First
Recursion Theorem.

Proposition 9.14%, If ' is a n+ l-ary mapping recursive in 2, then the
mapping I', = 46,...0,.40.T(@,,...,0,,0) is recursive in #.

Proof. We recall that the existence of T'; is ensured by 5.2*. The element
B, in the proof of 9.12* is constructed uniformly in ¢, ; in essence, we have
obtained a recursive binary mapping I’y such that Ty(g, ) = ub.e[¥(,
{0>%)] for all @, . On the other hand, it follows immediately from 9.4 that

r = ’191” .6"4,1.1[1—2[91,. J .,f‘Jﬂ)(I, <9n+1 >)]
with a certain mapping I', recursive in 4. Therefore,
Iy=49,.. 0, To(L,T2(0y,...,6,));

hence I', is recursive in Z by 7.18.

Proposition 9.15*. If a mapping T is inductive, then it is recursive.

This follows from 9.14*,

The First Recursion Theorem makes it possible to solve systems of
inequalities as well.

Proposition 9.16%. Let a system of inequalities
(1) [i(Bg,...,0,) <0, i<n,

be given, where n>0 and T,,...,I', are recursive in 4. Then there are
elements ¢y, ..., ®, recursive in # such that g,,...., satisfy (1) and when-
EVEr Tg,..., T, satisfy (1), then ¢, <7, for alli<n.

Proof. The system (1) may be reduced to a single inequality in a manner
similar to that of Skordev [1979]. Namely, the mapping

I = 6.(Ty(06,....n—16,R")),...,[,(08,....,n— 16, R"())
is recursive in &, hence so is 0,=p0.T(0) by 9.13* Take ¢,=i, for i<n
universal element (mapping).
i@y -» @) =1(0) =10, = @, i <,
L@ -2 @) = R'T(60) = R0y = @,;

hence @,,...., satisfy (1).
Let tg,..., T, be another solution to (1). Then

r((rﬂa ] Tu)) g {FI’J(TQ! ¥ .,‘C,,), RS | l—‘n{Tl‘Ja P ’E"}) =< {ri]a S )Tn)s

hence #, < (7gs...,T,), which implies ¢, <, for all i <n. This completes the
proof.

In reality, the mappings I'y,...,I, in (1) may be of various arities
m < n since any such mapping I'; may be replaced by the n-ary mapping
A8y...8,.T(8,...,8,)
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The remainder of this chapter is devoted to universal clements and
mappings.

Let % =% and let .# be a set of unary mappings over % . An element ¢
is universal for % iff % < {fic/new}, while a unary mapping Z is universal for
Ml # < {A0.7Z(0)/new}. We consider unary mappings since the relevant
definitions and results for n-ary mappings are obtained in an obvious way
from 7.20. Notice that % (respectively .#) is countable whenever it admits a
universal element (mapping).

Proposition 9.17. Enumeration Lemma. Let # be finite. Then there is an

element 7 recursive in £ and universal for the clements polynomial in 2.
Proof. Let {L.R}U#B={V¥o,....Vn} and #«=cllyq,..., ¥,/ 1) It
follows by 4.13 that

WU =cl(hgs... \Pu/A0.40:0,i<m,II).

Take =g - sWm Ll x=({Wose.,{¥m> L) and 7=RIQWL,OxR,
QTR,L)]. To show that t is universal for %, we shall use the equality

=0, Q1. 0T, I) and the fact that J(s,t)Q = 5i by exercise 6.6, where
J = Ast.(2s + 1)2.
If i < m, then

J,0)r = 0y, Q. QTw. ) =iy =y
Let i <m and ¢ = kt. Then
JUk, i), e =J(k, ) Qxr =KWy =ikt = Y.
Let ¢ =kt, y =Tt. Then

Tk, 1), 2)t = KTt = (ke |t) = (@, ¥)

by 7.14, We are done.
The following Enumeration Theorem is an analog to theorem XXII of
Kleene [1952] and the corresponding statement of Skordev [1980].

Proposition 9.18, Let 4 be finite and % be the set of all elements recursive
in 2. Then there is an element ce% which is universal for %.

Proof. There exists by 9.17 an element e universal for the elements
polynomial in Byu{#>. Take p=C([I]L,R) and o= (I>p[D{t)p]. It
follows that ce® and fic = T[fir] for all n by 6.43.

Let @e#. Then 9.3 implies that ¢ = T[] with a certain i/ strictly primitive
in %, hence polynomial in #,0<{4% ). There is a number n such that y = a7,
hence

¢ = 1[y]=1[nAt] = fe.
Therefore, ¢ is universal for %. We are done.
Alternatively, one may use in the above proof the equivalence (1)<(2) of

7.11 and 9.2 instead of 9.3.
The following statement is called the Parametrized Enumeration Theorem.
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Proposition 9.19, Let # be finite and .# be the set of all unary mappings
recursive in 4. Then there is a mapping Le.# which is universal for .#.
The proof follows that of 9.18. Just take

T =20.<T5p[D{(1,{0))>p]

and make use of the Normal Form Theorem 9.4.

Assume from now on that a subset & of # is fixed, % is the set of all
elements recursive in % and .# is the set of all unary mappings recursive in
2. As in the proof of 9.17, J will stand for the pairing function Ast.(2s 4 1)2',

An clement y is natural iff for all s there is a t such that s =t. In other
words, natural elements are those which represent total unary number
theoretic functions.

An element ¢ is principal universal for % iff for all pe% there is a natural
primitive recursive element iy such that sigp = o for all n. A mapping X is
principal universal for .4 iff for all T'e.# there is a natual primitive recursive
element  such that aAl'(0) = myZ() for all n,6. We shall concentrate on
principal universal elements since the corresponding statements for principal
universal mappings may be obtained by an immediate parametrization.

Proposition 9.20. If ¢ is principal universal for %, then ¢ is universal for %.
Proof. Let oe%. Then [I]pe%; hence there is a natural element i such
that [ Ie = Ao for all n. It follows that Oy = k for a certain k, hence

@ =0[1o=0jc=ko.

This completes the proof.

Proposition 9.21. If ¢ is universal for %, then Qo is principal universal for %.

Proof. Let pe%. Then ¢ = ko with a certain k. Taking y = kP, we get
iy = J(n, k) for all n; hence  is a natural primitive recursive element. It
follows that

fig = iika = J(n, k) Qo = ikPQo = My Qo

for all n, hence Qg is principal universal for %. The proof is complete.

The following statement is called the Second Recursion Theorem. It is an
analogue to theorem XX VII of Kleene [1952] and the corresponding theorem
of Skordev [1980].

Proposition 9.22, If g% is principal universal for % and @e%, then there
is an n such that Ap = faa.

Proof. We have Qae4; hence there is a natural primitive recursive element
Y such that AQo = fvo for all n. Proposition 9.20 implies that DPy ¢ = o

for a certain m since DPY@e#. Taking n = J(m, mpj, we get

i = mmPyip = mD Py = mime = J(m, m)Qo = J(m, m)rg = fio,

which completes the proof.
A parametrized version of the Second Recursion Theorem states that
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whenever Ze.# is principal universal for .# and I'e.# then there is an n such
that #T(6) = #X(6) for all 6.

The Enumeration Theorem and the Second Recursion Theorem imply a
fixed point result called the Recursion Theorem.

Proposition 9.23. If I is a uniary mapping recursive in %, then it has a fixed
point ¢ recursive in 2.

Proof. The mapping I" is recursive in a finite subset %, of #. Let I'*
correspond to I by 7.21 and let o be recursive in 48, and principal universal
for the elements recursive in %,; such an element o exists by 9.18, 9.21.

The element I'*(g) is recursive in 2, ; hence there is an n such that Al ™*(¢) =
fic by 9.22. Taking ¢ = fiz, we get

I(g) = I'(fie) = Al ™*(0) = no = @,

which completes the proof.

The element ¢ so constructed is not necessarily a least fixed point of T’
hence 9.23 is not a First Recursion Theorem. However, a recursive fixed
point of a given mapping is often all one needs. The advantage of the above
Recursion Theorem is that it depends on no u-axiom stronger than pA,.

A parametrized version of 9.23 states that whenever I' is a n+ l-ary
mapping recursive in 4, then there is a n-ary mapping I', recursive in %
such that

1—(91-’- Lt | em rl(gl'r' i 0")) = rl(ﬂls Bt Bn)

for all 8,,...,0,. Systems of equalities may also be solved.
The following statement is an analogue to a theorem of Rice [1953].

Proposition 9.24. Let oe% be principal universal for % and ¢ = & = %. Then
there is no natural element €% such that iige& iff Ay =0.

Proof. Suppose there is such an element Y e%. Take k, [ such that koed,
Tee@\ &, then take 7= (I [1]k). It follows that toe, hence fito = fic for
a certain n by the Second Recursion Theorem.

If iy =0, then riced, it = [, hence

lo = fito = ficed,

which is not the case.

If Ay 0, then ficed, nt=k, hence ko =ito =iocg¢d, which again is
not the case. The proof is complete.

We close our study of universal elements and mappings by a discussion
of the Theory of Numberings. Our reasons for doing this are first to avoid
any overwork and, secondly, the proofs in the general theory turn out to be
adaptations of the original proofs of Ordinary Recursion Theory, see 9.22, 9.24
for example.

To each element g% universal for % assign a numbering o* of % by the
equality

o*n = Ao, nEw.
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Take the set W, of all unary partial number theoretic functions weakly
representable by recursive elements. Proposition 8.2 implies that all unary
partial recursive functions are in P, and if f is a unary function p-recursive
in W, then fe'P,. Obviously, there are nonrecursive functions in ¥,

Proposition 9.25. Let se% be principal universal for %. Then ¢* is a pre-
complete numbering of % in the sense of Maltsev [ 1961], where the last notion
is relativized by considering members of ¥, instead of unary partial recursive
functions.

Proof. Let fe¥,. Then f is weakly represented by a recursive element .
It follows that @oed%; hence there is a natural primitive recursive element
such that fipe =mpe for all n. The element s represents a total function
ge¥, and if f(n)], then

a*g(n) = g_[aa = fifro = pa EMG =a* f(n).

It now follows from a statement of Ershov [1977] that ¢* is a precomplete
numbering. This completes the proof.

It is worth mentioning that the arguments in Ershov’s book concerning
precomplete numberings depend on the closure properties of the class of all
unary partial recursive functions, so they remain valid for the above relativized
notion of precomplete numbering.

Proposition 9.26%**. 1f g% is principal universal for %, then ¢* is a complete
numbering in the sensc of Maltsev [1965].

Proof. Let f be a unary partial number theoretic function. Then [ is
represented by a recursive element ¢ by 8.3***, It follows again that poe?,;
hence there is a natural primitive recursive element v such that fipe = Ay
for all n. The element y represents a general recursive function g by exercise
8_5***'

If f(n}], then o*g(n) = o* f(n) as in the proof of 9.25.

We have Oe% and whenever f(n)T, then figp = O; hence

o*g(n) = g(n)o = Mo = fips = Oc = 0.

Therefore, o* is a complete numbering. The proof is complete.
As a corollary to 9.25 we get the following analogue to a theorem of
Rogers [1967].

Proposition 9.27, Lct 6,0,e% be principal universal for . Then there is a
natural recursive element ¢ such that ne = nea, for all n and ¢ represents
a permutation of w, i.e. me # g whenever m # n, and for all n there is an
m such that me = n.

Proof. Since €%, there is a natural primitive recursive element i such
that e = mye, for all n. The clement Y represents a total function ge'ty,
and it follows that

cfn=noc=mjo, = g{—n]o'1 =og¥g(n)
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for all n, hence g reduces o* to of. Similarly, the numbering &7 is reducible
to o* by a total function from W¥,. Using a (relativized) theorem of Maltsev
[1961], we conclude that ¢* and oF are recursively in W, isomorphic, i.e.,
there is a p-recursive in W, function f such that ¢¥n =¥ f(n) for all n and
f is a permutation of w. Then fe'¥,; hence there is a recursive element ¢
to weakly represent f. However, [ is total, hence ¢ represents f and
Ao =o*n=of f(n)=f(n)g, = ngo,

for all n. This completes the proof.

Proposition 9.27 may also be proved directly by making use of the
Recursion Theorem 9.23. A parametrized version can be established, too.

EXERCISES TO CHAPTER 9

Exercise 9.1. Give an alternative proof of 9.10 based on 6.16 and exercise 6.2
instead of exercise 6.1i and proposition 6.30.

Hint. Show that uf.e[y(l,0y)] = @l[e], where o= uf.((0,4(2,¢4)),1,
%2, 0R?). To that end, supposing @[¥(I,tx)] < = and writing p for [¥(I, tx)],
prove that R[ o] < ub.(p, p, zp, Oyp). (If uA, is allowed, then one does not need
exercise 6.2 to get the last inequality.)

Exercise 9.2. Let [*e% satisfy condition (£)* of exercise 6.8% Using the
Parametrized Recursion Theorem and exercises 6.1h, 6.10, give an alternative
proof of 9.12%*,

Hint. The operation A* of exercise 6.10 exists and is recursive by the
Parametrized Recursion Theorem and exercise 7.1. Take

g = A*(((0,(RT, {01 » C(RT, R?))),01), C(RT, R?)).

Using exercise 6.1h, show that @01[¢] is a solution of @[y(I,{0>)]=20.
Supposing e[W(l,{z>)] <1, take p=[¥(l, {r>)] and prove that R[¢] <
A*((p, p). p)- {

Combining 9.4 and exercise 9.2 one gets a second proof of the First
Recursion Theorem which depends on uA, plus (£)*. Another proof given
in [vanov [1980] assumes that { >, [ ] satisfy the requirements of 5.13;
there is also a proof due to J. Zashev which depends on similar assumptions
and uses an ordinary coding of terms.

The following exercise establishes a parametrized version of 9.16%.

Exercise 9.3*. Let a system of inequalities

rl(gla*--sgn-#m]ﬂﬂn-i-h ]giﬂ;“n,

be given, and let I'y,...,T",, be recursive in #. Show that there are n-ary
mappings I'¥,...,I'% recursive in 4 such that

ri(eii'--aﬂn: rt[gl's-"1Bn)3"'1r:‘t(91!"'7ﬁn)]= r?‘(gl!"-aan}

forl<i<mandallf,,...,0,,andif 7,,...,7,.,, satisfy the above system, then
F?(le“-arn}g T 1 = fﬁfﬂ.
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If the element U of exercise 7.8 is available, then even more general systems
of inequalities can be solved. The idea of using least upper bounds is due to
J. Zashey.

Exercise 9.4. Let U satisfy condition (1) of exercise 7.8 and suppose given a
system of inequalities

FJ{HG: vy blp) < Hip J=m,

with io,...,i,,<n and suppose that I'y,...,I’,, are recursive in {U}uZ.

Transform this system into an equivalent one introduced by mappings

recursive in {U} w4 and such that cach 0, appears at most once on the right.
Hint, Show that each pair of inequalities

rk(gﬂv--aan)ggi‘! 1—‘;(90,...,9")2 91‘
is equivalent to the single inequality
U(Fk{OO!"'!gnL r!(go!"'!gn))igi'

It is worth mentionning that the least solution turns an inequality
['y(0,,...,0,) < 0, into an equality, provided 0, occurs just once on the right
side of the given system.

Let #=.% and % (respectively .#, stand for the set of all the elements
(unary mappings) recursive in 4.

Exercise 9.5. Following the proof of 9.17, prove the Enumeration Theorem
by means of the Recursion Theorem.
Hint. Let Z = {{,,...,.¥,.}, ¥ = (L, R, ¥y,...,¥,,, L)and p = C([I]L, R). The
mapping
['=20.0(,0<0>6,0T0,G<85,p[D<O>p], L)

is recursive in 4, hence it has a fixed point ¢ recursive in #. Show that ¢ is
universal for %.

Exercise 9.6. Show that whenever X is universal for .#. then Z(y/) is universal
for the elements recursive in {/} 4. In particular, (/) is universal for #.

Exercise 9.7. Show that % (respectively .#) has a universal element se%
(mapping Ze.#) iff the set 4 is finitely generated, i.e. all the members of # are
recursive in a finite subset 2, of 4.

Both the Recursion Theorem 9.23 and its parametrized version can be
reduced by 7.20 to the following assertion: Whenever I'; is a unary mapping
recursive in 2, then there is a unary mapping I" recursive in 4 such that
L6, r@)=1( for all 4. One may put the question whether more
complicated equalities can be solved. For instance, is there a mapping I
recursive in & such that I',((6,1(I",(0)))) ='(#) for all 0, provided I',,T,
are recursive in #7

Speaking somewhat informally, let I',,....I",, be unary mappings over #,
let T stand for a unary mapping and let ¥7(6, ') be an expression constructed
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by composing I, I, T'y,....I',. (The pairing operation is added to compensate
for the unarity of the mappings.) The following exercise establishes a
Generalized Recursion Theorem.

Exercise 9.8. Let I',,...,I",, be recursive in . Prove that there is a mapping
T recursive in % such that (6,1 = I'(d) for all 0.

Hint. The mappings T'y,...,I",, are recursive in a finite subset %, of #.
Take a mapping £ recursive in &, and principal universal for the unary
mappings recursive in %4, and consider the expression ¥7,(6,0,,I') obtained
from ¥7(8, ") by substituting 8, I for I'. The mapping I'* = 100, .¥,(0,0,,%)
is recursive in 4,; hence there is by the Parametrized Transition Theorem
a mapping ['** recursive in &, such that Al'**(0,0,)=TI%*(0,nd,) for all
n,0,8,. There is n such that aT**(0, I} = nX(0) for all 6 by the Parametrized
Second Recursion Theorem. Taking I" = 16.72(6), one gets

v (0,1) = ¥, (6,7, L) = T*6,n) = nl**(0,1) = nZ(0) = I'(6)

for all @, which completes the proof.

The above theorem can obviously be restated for n-ary mappings as follows.
Ifr,,...,I',, are mappings over % recursive in 4, I stands for a n-ary mapping
and the expression ¥°(8,,...,6,,I") is constructed by composing I, I'y,...,[",,
then there is a mapping [ recursive in # such that ¥7(8,,....0,, )=
I'i,...,0,) forall 84,...,0,.

A generalized First Recursion Theorem established in the exercises to
chapter 12 will show that moreover, the equalities considered above have
solutions I' recursive in # which are least with respect to the pointwise
partial order.

Exercise 9.9. Let I':# —».% be recursive in #%. Construct a mapping I'*
recursive in & such that al*(#) = I""(6) for all n, 0.

Hint. Use exercise 9.8 to obtaina mapping I'* recursive in % such that
[*(6) = (6, T*(I'(9))) for all 0.

The following exercise strengthens both the Second Recursion Theorem
and the Recursion Theorem.

Exercise 9.10. Let oe% be principal universal for . Prove that for every
binary mapping I recursive in % there is a natural primitive recursive element
¥ such that I'(ny,n) =AY for all n.

Hint. Applying the Parametrized Transition Theorem twice, obtain a pe®
such that I'(m, i) =mAp for all m,n. Take natural primitive recursive
elements Y, ¥, such that AQo = My o, R{DPY,)p =mp o for all n, then
take =i, DPy, and show that #iyip = nja for all a.




