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PART A

Introduction




CHAPTER 1

Preliminaries

This book aims to provide a straightforward introduction to some funda-
mentals of modern Recursion Theory and to establish a basis for further
work in this and related areas. The mathematical core of the subject is the
theory of an algebraic system which we call an iterative operative space, 10S
for short, which is a partially ordered set with four basic operations satisfying
several axioms.

The algebraic system in question has been specially designed to support
a unified yet selective axiomatic study of the concept of effective computability
arising in a wide range of disciplines, from Computer Science to Generalized
Recursion Theory. Some reasons for our choice are given in the introductory
chapter 2, while a further discussion follows in the Epilogue.

By way of illustration two standard spaces are presented in chapter 3.
They are essentially different, so the axiomatic system of IOS has no single
standard model to reflect adequately its intuitive aspects. Nonetheless, one
could start with some particular spaces and only later pass to the general
theory. It seems however that the detailed preliminary or parallel study of
examples is not a very good introduction, for the key to the theory lies in
the p-induction technique which is equally clear in particular spaces and in
abstract. Perhaps the best way to familiarize oneself with 1OS is to practise
proving properties of its initial operations as done in chapters 4, 6. Finally,
passing from the general to the particular is in closer conformity with our
traditional Bulgarian way of thinking; for instance, we address a letter to
South Georgia, Grytviken, Scotia Arc College, not Scotia Arc College,
Grytviken, South Georgia, as is the custom in other countries. These are the
chiel reasons for arranging the exposition as we have.

The book consists of seven parts, part A being the Introduction. In part B
a general theory of recursion is developed. Abstract notions of primitive
recursiveness and recursiveness are introduced, a number of properties of
the IOS-operations are established and used to obtain some basic statements
including a Pull Back Theorem, a Transition Theorem, Representation
Theorems for primitive recursive and partial recursive number theoretic
functions, Normal Form Theorems, Enumeration Theorems, a Kleene First
Recursion Theorem, a Second Recursion Theorem, abstract Rice and Rogers
Theorems.

Part C broadens the argument with recursion theory on so called conse-

9



10 Introduction [Part A

cutive spaces, spaces with additional operations and hierarchies of spaces.
The hierarchies in question are transfinite sequences of consecutive IOS each
of which is a proper subspace of its successors. In particular, abstract
analogues to Platck’s First Recursion Theorem are established. Thus parts B,
C introduce the reader straightaway to the central topics of the book. To
keep fiction in touch with reality certain examples of IOS are regularly used
as sources of illustration, mainly in the exercises.

Part D deals with some constructions yielding 108, consecutive IOS and
hierarchies of TOS.

In part E a series of spaces is used to express particular notions of effective
computability, eg. the relative p-recursiveness and partial recursive-
ness of Ordinary Recursion Theory, the stack recursiveness of Germano
and Maggiolo—Schettini [1976], the prime and search computability of
Moschovakis [1969], as well as computabilities by abstract programs. It is
not our intention to present or study all known spaces and notions of effective
computability but rather to suggest typical patterns of modelling applicable
to other similar situations as well.

Connections with certain related theories are established in part F. The
system of de Bakker and Scott, better known as Scott’s u-calculus, and those
of Skordev [1982, 1976] are considered in chapters 26, 27. In chapters 28-30
appropriate spaces provide a framework for the theory of recursive functionals
of Kechris and Moschovakis [1977], Higher Recursion Theory and Inductive
Definability Theory. While parts E, F clarify the way in which the general
axiomatic theory produces particular recursion theories, few details about
these are given, for this is beyond the scope of the book. Works listed in the
References offer further introduction and bibliography; especially useful is
Barwise [1977], part C.

Part G comprises some final remarks on the axiomatization of Recursion
Theory with special attention paid to the present approach.

The exposition is necessarily detailed since no comprehensive presentation
of the subject can be found elsewhere. Nonetheless, the author has tried to
clear a middle course between an encyclopaedic reference book and a readable
text-book. A number of exercises have been provided, sometimes contributing
to the main text.

A lecture course based on the book may include a minimum of general
theory and Ordinary Recursion Theory (selected parts of chapters 4-9, 18, 19,
22) as applied to a more specific area, say the Mathematical Theory of
Programs (chapters 23, 26) or Computable Functions over Arbitrary Domains
(chapters 10, 21, 24), Recursion in Higher Types (chapters 28, 29). Inductive
Definability (chapter 30), a corresponding introduction to Recursion on Set
Functions or Ordinal Functions ete. If the field of further interest is to be
Algebraic Recursion Theory itself, then substantial parts of chapters 10,
12-16, 20, 27 should be included instead.

Because of its axiomatic character the present work is essentially self-
contained. The reader is assumed to possess the ordinary mathematical
sophistication of an undergraduate student and a slender acquaintance with
ordinals and transfinite induction.
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Some standard notations are used throughout the book. ‘Iff* is, as usual,
written for ‘if, and only if". The letter w denotes the set of all natural numbers
(nonnegative integers), as well as the first infinite cardinal. Letters m, n, i,j, k. |
stand for natural numbers and &, for ordinals.

If M, N are sets, then f:M—— N means that [ is a partial single-valued
function from M to N, i.e. f =M x N and whenever (s,t), (s,7)}ef, then r=1.
Symbols | and 1 are written respectively for ‘is defined’ and ‘is not defined’.
The equality sign is also used as a sign of conventional equality. For instance,
if f,g:M—— N, then f(s) = g(s) means that either f(s), g(s) are defined and
identical, or [(s)T,g(s)T (the usual notation is f(s) =~ g(s)). If f is a partial
multiple-valued function from M to N, f:M——2"\{ &}, then we write also
f:M—=2¥ or f= M x N, meaning f(s)1 if f(s) = and identifying f with
its graph. A countable sequence @g,@1,....Q,,...is written {@,},, or just
{9,}, and similarly {¢,} is a transfinite sequence.

If # is a set, Z< % and %' is a set of operations over # (i.e. mappings
%"= F,n>0), then cl(#/%') stands for the closure of # under the
operations in 4'. Formally, this is the least set #* satisfying the following
two conditions:

1. 8 ®*

2. UT:F"—>Fe#, then [(#*") c B*.

In other words, cl(#/#') consists of those members of % which can be
obtained from members of # by means of operations from 4'. Notice that
whenever gecl(#/%'). then there is a finite subset #, of # such that
pecl(B,/#).

If & is a partially ordered set and I''# —.%, we write uf.I'(6) for the
least solution of the inequality I'(f) < 0, if it exists. If I' is monotonic, then
Bo=ub.T'(0) is also the least fixed point of I'. Though the argument is
immediate and well known, here it is. Indeed, it suffices to show that 8, is
a fixed point of I". The inequality I'(6,) <8, implies ['(T'(8,)) <T'(0,) by
the monotonicity of I'; hence I'(f,) is another solution to the inequality
'(6) < 6. This gives 6, < T'(0,), hence T'(6,) = 8,.

All the statements in the book are called propositions and enumerated
uniformly. For instance, 5.11 refers to the eleventh statement of chapter 5.
The exercises and examples are enumerated separately.



CHAPTER 2

Effective computability

What is effective computability?

Broadly speaking, a class of elements # is given, where the elements may
be functions, functionals, operators, or any other kind of ‘data processing’
objects. Some elements are taken as initial because of their ‘obvious effective
computability’. Certain initial ‘effective’ operations over & are also chosen,
assuming they preserve ‘effective computability’. New ‘effectively computable’
clements are generated from initial ones by means of initial operations and
their properties are studied.

A classical example of a class of effectively computable objects is the
effectively computable number theoretic [functions studied in Ordinary
Recursion Theory. According to Church’s thesis (which is widely accepted)
these are exactly the partial recursive functions, which can be defined
inductively as follows. :

1, The functions 4s.0, As.s+ 1 and s, ...s,.s;, 1 <i<n, are partial recursive.

2. If fio™——>w and gq,....gn 0" ——w are partial recursive, then so is

B=281...85F (G1(S15--s50)s -+ s G815« -55n))-

3. If fio——w and g:o*——w are partial recursive, then so is
h:w?——w, where

h(s,0) = f(s),
h(s,t + 1) = gl(s,t, h(s, ).

4. 1f f:0"*'— > is partial recursive, then so is
h=28y...5, pt(f(S15:+»Smt) =0),

where h(s,,....s,) is the least ¢ such that f(s;,....8,,6)=0 and f(5y,...,857) 1
for all r < t, while h(sy,...,s,)T if such ¢ does not exist.

The respective operations in clauses 2-4 arc called composition, primitive
recursion and the least number operator. One gets the primitive recursive
functions by skipping clause 4.

We shall modify the above definitions of primitive recursive and partial
recursive functions to refer only to unary functions by making use of the
fact that @ admits a primitive recursive pair coding, say J = Ast.2°(2t + 1)—1.

Take the class # , = {¢/@:00—— w} and fix initial elements o = 4J(s,1).s,
Yy =AJ(s,0).t, Yp=As.s, Y3 =45.0, Yy=Ads.s+1 and initial operations e,

12
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M*, Pr.F}i—F,and Ln:F y— F such that
' @y =@y = is.Y(0(s)),
[T* (g, ) = As.J(0(s), ¥ (s)),
Pr(e.)(s)= oWols)), if ¥(s)=0,
Pr(o.)(s) = W(J Wo(s), JW1(5) — L, Pr{@, )T (Wo(s), v y(s) — D)), if vy y(s)> 0,
Ln(p) = As.ut(ep(J(s,1)) = 0).
Then it can be shown that
Uo=clig,..., g/ 11% Pr)
is the set of all unary primitive recursive functions, while
U = cl(W,... /T, Pr, Ln)

is the set of all unary partial recursive functions. Other initial elements and
operations which also generate % will be suggested in chapter 3.

It is instructive to notice that two out of the above four operations have
a least fixed point nature. Namely, let ¢ < i iff ¥/ is an extension of o, i.e. iflf
¢ = . Making use of the function s = As.s — 1(/5(0) =0, ¥s(s + 1) =) and
the branching operation

ofs), il x(s)=0,
(x=o.Y)s) =< w(s), il x(s)>0
f. il x(9)71,

it follows that Pr(¢p, ) is the least (and unique) fixed point of the mapping

A0y = o @, TT* (Y, Yoy Y )T (g, TT* (1, O))0)

while, as shown in Skordev [1980], Ln(p) equals IT*(y/5, ) multiplied by
the least fixed point of the mapping

A0 =, TT*(Yrg, Yy h4)0).

Of course, the class %, is very special and will not be our only starting
point. Here is a rather different one consisting of monotonic functionals:

F.={¢/¢:0 x Fy——-w & ¢ is monotonic},

where ¢ is monotonic iff whenever ¢(s,@) =t and ¢ <, then ¢(s./) =1.
Alternatively, one may consider operators instead of functionals, the class

F,={T/T:F o F, &T is monotonic},

where I'is monotonic iff whenever ¢ </, then T'(@) < T'(i). To each functional
¢eF , there corresponds an operator A6.4s.¢(s,0)e# , and vice versa, a
functional As0.T(0)(s)e# , corresponds to each operator I'e & ,.

Intending as we do to develop a general theory of effective computability,
we make it our immediate task to choose abstract initial elements and
operations to fit the above two classes as well as other similar ones. This is
a key step which in effect determines the shape of the theory. Now, what
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kind of initial operations are we looking for? Initially, they should be few
in number, simple and convenient. Secondly, they must be sufficiently non-
trivial to support a rich general theory.

We shall extract four initial operations. The first one is fundamental and
inherent in the concept of effective computability. (And so are the others,
but this is less obvious at this stage.) The second operation is needed for
technical reasons, while the last two are added to ensure that our collection
of operations is in a certain sense complete. Let us be more specific, Letters
@,%, %, 0,7 will stand for arbitrary members of #.

Suppose first that an ‘effective’ multiplication operation ©:F*—% and
an element /e can be specified in such a way that a semigroup with a unit
I is obtained. It is surely difficult to imagine operations more natural for
F 0. F , than composition of functions or operators. Moreover composition
is associative. So take @y =as.(o(s)), I=is.s, respectively I';I'; =
40.T4(T5(8)), I=A40.6. Passing from operators to functionals, one gets
O = is@.dls, A Y(t, ), I = Asp.@(s) in F 4.

Furthermore, we need a pairing operation for the members of #, which
is why we assume that there is an ‘effective’ operation I1:%#?—% and
‘effectively computable’ elements L, Re# such that L(¢, )=, Rle, )=y
for all o,y, writing for short (¢,¥) for (e, ). To realize this in our two
control classes, just take (g,)(2s)=o(s), (@, 9)(2s + 1) =y(s), L=4s.2s,
R=/s2s+1 in #, and (¢, ¥)(2s, )= (s, 0). (6. ¥)(2s+ 1, 0)=¥(s, ¢),
L=250.0(2s), R = 1s¢.¢(2s+ 1) in & . (More details about the classes 7,
# , and their initial operations will be given in the next chapter.)

The operations  and I1 are naturally connected by the distributive law
(@, ¥)x = (@1, ¥y) which can be easily substantiated in both %, and #,.

We obtain our remaining initial operations from multiplication and pairing
by making use of least fixed points. Experience from Ordinary Recursion
Theory suggests that it is reasonable to suppose that with respect to a certain
partial ordering all ‘effective’ operations I':# — % have least fixed points
which are ‘effectively computable’ clements. Assuming this and examining
the least fixed points of some simple mappings constructed by means of ¢, II,
we show that two of them behave very nicely. The first is the least fixed point
of A0.(pL, OR), denoted by {¢), while the second is the least fixed point of
0.1, 00), denoted by [@]. We call the operations ip.{@), Aip.[¢]
respectively translation and iteration, the names deriving from the syntax or
semantics of the operations concerned.

A partial order has already been introduced in % . As for # |, take ¢ < ¥
iff W is an extension of ¢. The existence of operations { ), [ ]in both
classes will be established in the next chapter.

The elements I, L, R and the operations ¢, I1,{ »,[ ] are all we need
to start developing a general recursion theory. As a matter of fact, the above
remarks reflect the very route by which the author arrived at the present
approach in May 1979, with & being the class of all monotonic unary
mappings over an arbitrary Skordev combinatory space.

It is interesting to see how { D, [ ]look in g or #; however this
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yields an intuition which is not so helpful in the general theory. In compen-
sation, the following intuitive algebraic interpretation proves very suggestive.

Consider informally (o> as (90, (¢1,(¢2,...))), where ii = LR", and [¢]
as (I, (I, (1,...))). Now, for instance, the equality Lo = R[(WL,@R)] is
easy to deduce, but how does one guess what [@]i) is equal to in advance?
To see this, we agree informally to get

[y = (L (,.. )W =W, 0(f,...)) = (WL, @R)L, (WL, oR)L,...))
= (YL, oR)[(WL, @R)]=R[(YL. R)].

In another example,

o>y = (0, (0T,.. )<Y > = (@0 D, (9T, )
= (Y0, (py1,...)) =¥

suggests that () () = { @y ). Similarly in other cases, some of which are
far more complicated.

Now that the above two equalities have been suggested, how does one
prove them formally?

Take the equality (I, @[¢]) = [¢]. Multiplying by ¥, one gets (¢, o[ ]}) =
[¢]y; hence [y is a fixed point of the mapping A0.(Y, @), In order to
prove the equality [@]y = R[(¥L, @R)], however, it is not sufficient to know
that [] is the least fixed point of A0.(I,p0). One should be given a little
more, namely that [@]y is the least fixed point of A0.(y, ¢0). (The latter
implies the former by taking y = I.) That granted, the proof is easy.

To begin with,

(LU L, oR)L [oI¥)) = (1, (¥, pLoI¥)) = (I (I oL@ D) = (1, [o1;

hence [(YL,R)] < (I,[¢]¥). Multiplying on the left by R, we get RI(YL,
©R)] < [¢]¢. On the other hand,

(. @RLOVL, 9R)]) = (WL, @R)[(WL, pR)] = R[(VL, oR) ]:

hence [@]¥ < R[(WL, ¢R)]. Therefore, [¢]y = R[(YL, ¢R)]:
In order to prove (@) {¥) = { @y it suffices to be given that, whenever

Ry = yx,, then (@)y is the least fixed point of 26.(pLy, Ox)- Actually, it
follows that

(WL, o> POR) = (@L{Y ), (o >R ) =(pL. {@>RIY> =@ <V ;

hence ¢ oy > < < ¢ ) (¥ ). On the other hand, R{y ) = (¥ > R (here = (i),
¥, = R) and

(@L<, (o > R) = (YL, Coy > R) = (o 33

hence (@) () < (@ >. This completes the proof.

We collect all the necessary basic properties of { > and [ ]in an axiom
called p-induction axiom, u-axiom for short. Several versions of this axiom
are studied in this book. In essence, the properties assumed in the above two
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proofs compose the weakest axiom pAg:

(£) (L, {@>R)<<9),

Ry <y &(oLp, ) <t={@ Y <.
(££) (I o[e]) <[],

W o)< t=[olYy <.

This simple axiom turns out to engender almost all important statements of
the general theory.

Thus we have designed an algebraic system intended to provide a frame-
work for studying the concept of effective computability. We call this system
an operative space since its clements are capable of operating in one way or
another. An operative space (OS) is a 5-tuple & =(#,1,11, L, R) where # is
a partially ordered semigroup with unit I, IT is a monotonic binary operation
over Z# and L,R are distinct members of # such that (@, )y = (91, ¥x),
L(@,¥)= ¢ and R(p,)=y. An iterative operative space (I0S) is an OS
satisfying a certain y-axiom, and we write 10S = OS + pA.

Our basic abstract notion of effective computability is that of relative
recursiveness defined as follows. Given a subset # of &, an element ¢ is
recursive in % iff

Ao

pecl({L, R} w#/, L D[ 1)

i.c. iff @ can be constructed from L,R and members of # by means of
o,J1,{ [ 1. (Theelement I is not taken to be initial since I = L[L].) This
definition goes beyond what one might expect from the preceding discussion,
for it introduces a notion of relative rather than absolute effective computa-
bility—an important step first made by Turing.

Starting with = and I1, infinitely many ‘effective’ operations can be obtained
via least fixed points. Such an operation is, say, the passage from ¢, ¥ to
the least fixed point of 78.¢(l,6%y). However, our choosing only two of
these operations (( » and [ ]) leads to no loss of generality since all the
others can be expressed in terms of ,IL.{ >,[ 1, as we will show later.

Least fixed points have always played an important role in Recursion
Theory; indeed the least fixed point phenomenon gave the theory its
name. Least fixed point machinery has been widely exploited recently in
Recursion Theory (e.g. Platek [1966], Moschovakis [1977,1984], Feferman
[1977], Kleene [1978], Skordev [1980]), in Inductive Definability Theory
(Moschovakis [1974]), as well as in Computer Science (Scott [1971], de
Bakker [1971], Manna [1974]). However, what is characteristic of the iterative
spaces studied in the present book is the axiomatic treatment of recursion.
Similar p-induction principles are used in the Skordev combinatory spaces
and the system of de Bakker and Scott. In fact, we shall see in chapter 26
that the axiom pA, is a particular instance of Scott’s u-induction rule.




CHAPTER 3

Two examples

The axiomatic system of I0S outlined in the previous chapter has an
enormous scope provided by its abundance of models. These are of two sorts;
let us call them first-order and higher order models. The carrier of a first order
model (such as &) consists of function-like elements, while that of a higher
order model (such as #,) consists of operator-like ones. As an illustration
we present here two standard examples of 10S which will be studied in
greater detail and in a more general form respectively in chapters 22, 28. It
is convenient to use binary code, so that in this chapter s0 equals twice s
(in particular, 00 = 0), while sl equals twice s plus one.

The first example corresponds to example 4 in Skordev [1980]. chapter 2,
and to example 1 in Skordev [1982].

Proposition 3.1 (Example 3.1). Let # = {@/p:0w—— w} (the class # from
the previous chapter), @ <y ifl Sy, @Y =2s.(0(s)) (@, ¥)(s0) = o(s),
(@, W)(s1) =(s), I = As.s, L= As.50 and R = As.51. Then & = (#, I, I,L,R)is
an 10S.
Proof. Let us first check the axioms of OS. We have
() = W) (@(s) = 2l o(s))) = x((@)(s) = (0¥ )xls);
hence o(¥y) = (@y)y. We also get
ol(s)=1(@(s)) = @(s), To(s)= @(s)) = @(s);

hence @I = I = @. Therefore, # is a semigroup with unit L.
The monotonicity of ¢, IT is immediate. The equalities

(@, Y)x(s0) = xlo(s)) = ox(s) = (@i, Y)(s0),
(@, ) x(s1) = x(Y(s)) = Y x(s) = (o, Yx)Ns1)
imply (o, )y = (@, Wy). Finally,
L{e, ¥)(s) = (@, ¥)(s0) = q(s),
Riep, ¥)(s5) = (@, ¥)(s1) = W(5)

give L(p, ) = @, R(p,¥) =y; hence & is an OS.
If {¢,} is an increasing sequence in %, then ¢, S ¢, <..., hence ¢ =
\Un@,€F and ¢ = sup,,. Moreover, we have gy = sup, (¢,¥), ¢ = sup, o,

17
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and (W, @) = sup,(, @,) for all . If O = 4s.1, then O <y and Oy =0 for all
. Using these properties, we are going to establish the validity of the axiom
HA,.

Take 6,=0 and 6,,, =(pL.0,R). The monotonicity of the mapping
#8.(pL, OR) implies by induction 8, <0, for all n. Define{e) = sup,f,
Then

(oL, {¢p>R)= (qu, (sup 8,,) R) = (pr, sup(B"R)) = sup(epL, 0,R)
=supl,.,={@>.

Suppose that Ry <y, and (pLy,1,) <t. Then Oy =0y =0 <7 and
whenever 0,1/ <, then

) 0,, ¥ = (0L, O,RW = (oL, 6,RY) < (0L, 6,9 ) < (oL, ;) <7,
ence

<@>w=(supe,)w=supwmg

Therefore, (£) holds.
In the case of iteration take 8, = 0, 8,4, = (I, @8,) and [¢] = sup,0,. Then

(I, plo])= (L rpsuvﬂ?n) - (I,sup fpﬂn) =sup(l, ¢8,) = supf, ; = [¢].

Suppose that (, ¢7) < 1. Then O = 0 <7 and if 6, <7, then

6:‘l+ l'\b - (Is @Gn)‘bb = (!o{’s (PB,,]}/) g (I‘y! q'JT) i T.
Therefore,

[ely = (SUP sn)w =sup(@y) <t

and (££) holds. The proof is complete.

The next statement establishes explicit characterizations of the operations
¢ >,[ ] We begin with two remarks.

Take L, = L' = 4s0.s and R, = R™* = isl.s. (In other words, L, = (1,0),
R, =(0,I).) Then it follows that LL,=RR;=1I, LR,=RL,=0 and
(¢, ¥)=Lio UR Y.

Each number s has a unique presentation as s = t01", 1" standingfor1...1,n
times

Proposition 3.2. Let & be the I0S of example 3.1. Then
{@(s01") = @(s)01",

[@](s) =t iff 3nry...r(ro=s&Yi<n(r;is odd &r;.y = o(Ry(r))) &r, = t0).
Proof. Multiplying the equality { ¢ ) = (¢ L. { ) R) on the left by n(= LR")
one gets A ) = ¢n for all n. Therefore,

@) (s01M) = il @ X(s) = @il(s) = @(s)01".
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Take 6y =0 and 6,,, =, ¢0,) as in the proof of 3.1. Obviously, 8, =
U:‘{G(RL(P}lLI' If 0, =Ji<a(R1@)'Ly, then

01 =LiVR 0l,= UI<n+l[R]€p}iLh

hence [¢] = sup,0, = | J.(R,®)"L,. If there exists an n such that (R,¢)"L;(s)},
then it is unique (being the least m for which (R, ¢)"(s) is even), hence [¢](s) =
(Ry)"L(s). Otherwise [¢](s)T. This yields the desired characterization of
[ 1, which completes the proof.

1t follows from 3.2 that translation is a primitive recursive operation, which
means that (@} can be constructed by clauses 1-3 stated in the previous
chapter with ¢ added to the initial functions in clause 1, employing one and
the same construction for all ¢. In other words, { ¢ » is uniformly primitive
recursive in ¢.

As for iteration, 3.2 shows that it is a g-recursive operation. That is, for all
¢ the function [¢] can be constructed by clauses 1-4 with ¢ allowed in
clause 1, using one and the same construction for all ¢; in other words, [¢]
is uniformly p-recursive in . (Why not say ‘partial recursive in ¢? Because
it differs from ‘u-recursive in @’; see the comments to exercise 8.2%%%*,)

On the other hand, it will be shown in chapter 22 that all y-recursive
operations over # can be expressed by meansof 5, II { »,[ J.In particular,
the unary partial recursive functions are exactly the members of % 10S-
recursive in Z, where Z(0) =0 and Z(s) = sl otherwise.

The following example is based on the class 5, of chapter 2.

Proposition 3.3 (Example 3.2). Let #, = {p/p:0—— w}. Take

F ={d/¢p:» x F y— —>w&¢ is monotonic},
¢ < W iff ¥ is an extension of ¢,

¢V = Aso. (s, At. (L, @),

(&, Y)(s0, @) = ¢(5, 9),

(6, ¥)(s1, ) = ¥(s,0),

I = Asg.o(s), L= Asep.@(s0), R = is@.@(sl)

Then . = (#,1,I1,L,R) is an 108,

Proof. Verifying the axioms of OS is left to the reader as an easy exercise.
We shall establish the validity of uA, by making use of the fact that whenever
{®,},<s 18 an increasing transfinite sequence in 5, then ¢ = U,,qu_qeﬁ?,
& =sup, .. d,, ¥ =sup,«(¢,¥) and (¥, @) = sup, . (¥, ¢,) for all ¥

Translation is treated just as in 3.1, defining { ¢ » as sup,®,, where @, =
0=4isp.7 and @, , =(¢L,O,R).

In the case of iteration, however, one has to consider transfinite sequences,
for the equality ¢sup,®, = sup,d®, may fail for discontinuous ¢.

Suppose that elements @, have been constructed such that @,=
sup; < (I, @,) for all n < £ Then the sequence {®,}, < - is obviously increasing,
hence so is {(1,¢0,)}, and the element ®, = sup, . (I, p®,) exists. In this
way one gets an increasing transfinite sequence {©.}. Because of cardinality
reasons it cannot consist of distinct members, hence there is a { such that
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©,., = ©; any cardinal { > Card (%) will do. Now put [¢] = ©,, then

(Lol¢])= VF ¢@{) = ®§+1 =[¢].

It remains to show that (¥, ¢Z) < E, implies [¢]¥ < . Supposing oY«
for all # < £, one gets

oY= (sup(f, qb@,,))‘? =sup((l, p©,)¥) =sup(¥, 90,¥)
n<s n<e <k
<(¥,9Z)<Z.

Therefore, @,¥ < X for all £, hence [¢1¥ < Z. The proof is complete.

The following statement characterizes the operations { ), [ ] of example
3.2 explicitly. Being by definition a particular instance of the least fixed point
operator over #, [¢]=pu®.(I,$®), itcration turns out (o be at the same
time the general least fixed point operator over # .

Proposition 3.4. Let & be the space of example 3.2. Then

(e )(s01", @) = s, 4t.(r017),
while for all ¢ the function ¢ = As.[¢](s, @) is the least solution of the equality

ols), ife=0,
P(s,0), ife=1,

or 6 = pb.(¢, As.¢(s, 0)) in terms of example 3.1.
Proof. The equality a{¢) = ¢n implies

{$ (01", @) = i P Y (s, @) = Piils, @) = B8, AL-A(t, ) = (s, At ¢(t017)).

As for iteration, notice first that for all Ye#, the functional =
As@.(s) is in & and ¢ =[¢]¢.

Multiplying the equality [¢]=(I,¢[¢]) by ¢, one gets 6 = (¢, ¢d), hence
o satisfies the equality (1) which can also be written as 0=(@,¢f). If T is
another solution to (1), then * = (¢, ¢7) implies [¢]p < 7 by (££). Therefore,
¢ < 7, hence ¢ < t, which completes the proof.

Recursion in specific functionals. It follows from 12.38% 22.4 that
[:%,—F, is a p-recursive operation iff Js8.T(0)(s) is an element of &
recursive in Z, Id, M1, where Id = Asf.s, M1 = As6.0(0(s0)1).

A function e, can be shown to have a II; graph iff the element ¢
of F is recursive in Z, Id, M1, E¥ (Kleene [1959], Kechris and Moschovakis
[1977]), where E#(s,0)=0, if 346(s01)=0), E¥(s.0)=1, if Ve(§(s01)>0),
and E*(s,0)7 otherwise. If ¢ is total, then one can replace T by “Ag
i.e. hyperarithmetical’.

(1) O(se) = {




