PART F

Connection with other theories

CHAPTER 26

Mathematical theory of
programs

This chapter clarifies the connection between [0S and certain related
algebraic systems of Computer Science, including the programming spaces
of Skordev [1982] and the system of de Bakker and Scott introduced in the
unpublished work de Bakker and Scott [1969]. Results of the general 10S-
theory are transferred to appropriate extensions of the latter system.

The programming spaces of Skordev are easy to describe. Ignoring some
minor technical differences, they are nothing else but OS augmented with
iteration satisfying (££), i.e. IOS without translation. A version of this system
is studied by Georgieva [1980].

The system of de Bakker and Scott is a formal one, hence a comparable
formal system for IOS is needed. In fact we are going to introduce two such
systems, 44 and s,.

System s,. Its language %, has constants I, L, R and variables denoted by
0,6,,0,,.... Terms are constructed by the operations ¢\, (p,¥), (@) and
[¢]. Formulas are equalities ¢ = 1.

The axioms and rules of 4, are those of equality and substitution plus
the following nonlogical axioms.

(0,0,)0;=0,(0,05), 6I=0, 16=6,
(61,0,)0 = (6,0,0,0),
L(0,,0,) =0, R(0,0,)=0,,

(0L, {8>R)= (8>, (I,0[¢])=[F].

What is interesting about this simple formal system is that it provides for
the weak representability of all the partial recursive functions, which implies
in turn that s, is essentially undecidable, That is, all consistent extensions
of 4, are undecidable. Consistency here means that 0= 0 is not deducible,

hence 0 = 1 is not deducible. (As usual, 71, O stand for LR", R[R].) The system
ag itself is consistent since every 10S is a model of it.

Proposition 26.1 (Undecidability Theorem). 4, is essentially undecidable.
Proof. Following an argument of Skordev [1980], take a partial recursive

201

202 Connection with other theories [Part F

function f:w——{0,1} which has no general recursive extension. (For
instance, if ¢ is a unary partial recursive function universal for all such
functions and g is a supposed general recursive extension of f = As.1 = 5o(s),
then g = fig for a certain n, hence g(n) = 1 = g(n), which is not the case.) The
proof of 8.2 implies that fthere is an #,-term ¢ such that whenever f(s)=t,
then 5¢ =t is deducible/in 44, written |-5p = 1.

@

Suppose that 7 is a decidable consistent extension of 4, Then the function

0, if-5¢ =0,
9(5]={1 e gy
, ifleSe= 0
is general recursive. If f(s)=0, then |~5¢ =0; hence |-5¢ =0 and g(s) =0.
If f(s) =1, then similarly |5 = T hence S = 0 and g(s) = 1. Therefore g
is a general recursive extension of f, which is not the case. The proof is
complete.

The system o,,a3,4, studied in this chapter are consistent extensions
- of a4, hence undecidable. One may also want to know whether they are
incomplete with respect to a certain standard model or class of models, say
the class of models consisting of partial single-valued (or multiple-valued)
functions. The answer is positive; all consistent recursively axiomatizable
extensions of 4, are incomplete with respect to a wide range of natural
classes of models.

A structure % the language of which extends %, is said to have the
representation property iff whenever f is a partial recursive function, ¢ is a
variable-free % ,-term weakly representing f by the proof of 8.2 and f(s)1,
then ESp=0, ie. §¢=0 is valid in &. For instance, all uA ;-iterative
0OS % have this property.

The following statement is called the Incompleteness Theorem.

Proposition 26.2. Let 5 be a recursively axiomatizable extension of ¢, and
let #" be a class of models of 7~ which have the representation property,
assuming §0= 0. Then there are %,terms p,6 such that
Ep=0cbutpp=o.

Proof. The idea is again due to Skordev. Take f as in the previous proof,
g(s)=0, if f(s)=0, and g(s)T otherwise; then take a #,-term iy weakly
representing g by the proof of 8.2.

The function h(s) = 1,if |5y = O, and h(s)T otherwise, is partial recursive by
the recursive axiomatizability of 7. By way of contradiction, suppose that
=5y = O implies h(s) = 1 for all .

If f(s) =0, then g(s) = 0; hence |:;§¢ =0, which implies |=5) = 0 and h(s)1.
Otherwise g(s) T gives ?5@9 = O by the representation property, hence h(s) = 1.
We get f < guh, which is not the case since U(g, h) is a general recursive
function by 22.4. Therefore, there is an s such that =5 = O but x5y = 0. The
proof is complete.

In particular, the role of 4 can be played by 4, itself. The latter system is

Ch. 26] Mathematical theory of programs 203

however complete with respect to the canonical model consisting of all & -
terms factorized by assuming ¢ = if - =1
‘i
A modification of the Incompleteness Theorem ensures that all consistent

extensions of 4, which provide representability of the partial recursive
functions are not recursively axiomatizable.

Proposition 26.3. Let 7, be a consistent extension of 4, such that whenever
f is a partial recursive function, ¢ is a #,-term corresponding to [by the
proof of 8.2 and f(s)], then |— Sp=0. Then 7, is not recursively
axiomatizable.

Proof. Suppose that 7 is a recursively axiomatized extension of sy and 7
is an extension of . Repeating the proof of 26.2 with |— substituted for &,
one gets #,-terms p, ¢ such that |— p=o0 but Pr,o —cr, hence &, 7,
are not equivalent. This completes the proof

It follows from 26.3 that the theory of uA-iterative OS is equivalent to no
recursively axiomatized first order theory.

System ;. The language %, is extended to a wider one ¢, as follows. Terms
are now constructed by the operations @, (@,) and the variable binding p-
operation (uf. @), while { @), [¢] stand respectively for u0.(pL, OR), u0.(I, ¢6)
for a certain @ not free in ¢, say the first such 6. Atomic formulas ¢, ¥ are
equalities ¢ = and inequalities ¢ <. Formulas are implications ¢ — P,
where @, P are conjunctions of atomic formulas written as finite lists. If ¢ is an
empty list, then we write simply ¥ for — ¥

The logical axioms and rules of 4, are those of equality and substitution plus

¢1!"')¢H_>¢I) al]lﬁfSH:
d—-W,1<i<n
(‘ﬁ—)l{’],_'_,‘{l" ;
P ¥V-X
X
The nonlogical axioms are as follows.
0,<6,0,<6,-0,0,<0,0,,
(9192)83 = 91 (6263), BI = 9, Iﬂ = 6,
0, <6,,05<0,—-(0,,05) <(0,0,),
(6,,6,)6 =(0,0, 0,0),
L(Gls 92} = 61: R(el'l 82) = 929
@(ub.p/0) < pb. o,
where @(1//6) is ¢ with y substituted for the free occurrences of #. Finally, 4,
has a nonlogical rule of inference,
@, = '¥(p/0)

) = P(ub.0/6)

204 Connection with other theories [Part F

where ¥ is either 8y <t or {8 <<I>t, and 0 is not free in &, 7, .

All the theorems of the formal system 4, are obviously theorems of the
theory of pA -iterative OS. Conversely, a number of the statements proved
in chapters 4-9 are theorems or metatheorems of s;. Since s, has no
negation, the role of ¢ — 1P is played by ¢, ¥ -L=R.

System a,. The system of de Bakker and Scott. Its language %, has
constants I, 0, function variables 0,8,,0,,... and predicate variables P, P,,
P,,.... Terms are constructed by the operations ¢y, (P— ¢,) and uf.@.
Formulas are introduced as in .%,; and the logical axioms and rules of 4,
are those of 4,.

The nonlogical axioms include the axioms of a partially ordered semigroup
with unit I and zero O, and the following axioms for conditionals due to
McCarthy [1963].

(P-ILD<I,
0,<0,,0,<0,-(P—0,,0,) <(P—0,0,),
(P—=(P—0,,0,),05)=(P—0,,0;),
(P—0,,(P—0,,03)=(P—0,,0,), :
(Py=(Py—=0,0,),(Py—03,0,)) = (P~ (P, —0,,05),(P, —0,,0,)),
(P—8,,6,)0 =(P— 80, 6,0).

The p-operation satisfies the axiom

@(pb.p/0) < pb.o
and Scott’s p-induction rule
b ¢£0/9£ 6. F - Pp/h)
¢— ¥ (ub.¢/0) '

where @ is not free in @.

This formal system has been extensively studied by de Bakker [1971], its
relevance to Computer Science residing in the fact that #,-terms provide
yet another presentation of unary recursive program schemes; more details
on this connection will be given in the exercises. The unary (recursion-free)
schemes correspond to the so called regular terms introduced as follows,
Fr(p) standing for the set of all free variables of ¢.

Each variable 0 is a term regular in 6. If 0¢Fr(p) and is regular in 6,
then both ¢ and @y are regular in 6. If @, are regular in &, then so is
(P—= @,). If @ is regular in 0, 0,, then uf.¢ is regular in 0,.

All function constants and variables are regular terms. If ¢, are regular,
then so are gy and (P — ¢,). If ¢ is regular in 0 and regular, then uf.¢ is
regular.

In order to apply the I0S-theory to the theory of program schemes, we
design a formal system to extend both 4, and 4,.

System a,. Its language %5 is obtained from %, by adding new function
constants L, R, K and a predicate constant Ev. (One may also add a predicate

Ch. 26] Mathematical theory of programs 205

constant Ze as in chapter 23.) The axioms and rules of 4, are those of 4,
plus

L(Ev—K#0,,K0,)=0,, R(Ev—K8,,Kb,)=0,

The introduction of L, R, K, Ev corresponds to the additional assumptions
of Bohm and Jacopini [1966] and de Bakker [1971], p. 46. In other words,
we have introduced a counter, hence the .#;-terms are unary recursive
schemes with one counter, while the regular .%;-terms are unary schemes
with one counter.

Proposition 26.4. 45 is an extension of 4,.

Proof. Writing (o,) for (Ev— K¢, Ki), the language % is an extension
of #, and the axioms of o, are deducible in s, while the inference rules
of 4, other than (u) are rules of 4, as well. The rule (1) however turns out
to be a particular instance of Scott’s rule. In order to prove this it suffices
to show that };‘P(O/H} for all ¥ allowed in (u). The assertion IIO;gg-c

is immediate. If ¥ is {0) < {I)1, then we get |—(O> < {I>0 by Scott’s
rule, hence [-(0) < {1t This completes the proaf

The fo]lowmg technical statement is easily proved by using I—(P—» o,) =
P(p,), where P stands for (P— L, R).

Proposition 26.5. For every %;-term ¢ with predicate variables Py,..., Py,
there is an Z,-term i and function variables 0,,...,0,, such that =@ =
WK, E0, By, P/, 050 2): =

We introduce certain varieties of % s-terms in accordance with the notions
of chapter 7, ‘recursive’ replaced by ‘canonical’ to avoid confusion. A term
is primitive iff I does not occur in it and the p-operation occurs as {) only.
A term is canonical (respectively, prime canonical) iff the p-operation occurs
initonlyas ¢ >, [J(as[1

Notice that all prime canonical terms are regular, which is not the case
for the primitive or canonical terms. The proof of 23.1 shows that the prime
canonical terms are structured schemes with one counter, while the canonical
ones are structured schemes with one counter and a very special form of
recursion compensating for the lack of a second counter.

Propositions 26.4, 26.5 make it possible to restate for 53 some basic
10S-results without having to repeat their proofs once again. To begin with,
the following Recursion Elimination and Structurization Theorem corres-
ponds to 9.15*.

Proposition 26.6. For every term ¢ there is a canonical term y such that
Lo=y.

By 26.6, the following Normal Form Theorem and Enumeration Theorem
correspond respectively to 9.4, 9.19.

Proposition 26.7. For every term ¢ and all Py,...,P,, 0;.....0, there is a

206 Connection with other theories [Part F

primitive term ¥ such that P,,...,P,, 0,,...,0,¢Fr(}) and

I;;(IJ:T[W(I’(Pl >3"'1<pn|>a<91 >3'--‘<9n>}]‘
In particular, t}“" = 1[y] whenever m=n=0.

Proposition 26.8. Forall P,...,P,, 0,,...,0, there is a canonical term ¢ such
that whenever Fr(p) S {Py,..., Py, 0,,... ,,} then l—cp ko for a certain k.

The following statement shows that all unary schemes with one counter
can be structurized—a well known result of Bohm and Jacopini [1966]
reaffirmed by de Bakker [1971], Skordev [1982] and Georgieva [1980].

Proposition 26.9. Let ¢ be regular in 6,,...,6, and regular. Then there is a
prime canonical ¢ such that 0,,...,0,¢Fr(¥) and e =y(I,0,,....8,). In
43

particular, if ¢ is regular, then |—¢ = for a certain prime canonical y.
Proof. By induction on the coﬁstruction of ¢; the induction step for the u-
operation follows.
Let E;@l=w{f.91,...,9n} and o@=ub,.p,. Writing p for
Y(OL,...,n—2L, R""'L, R),itfollows that |-, = p((1,8,....,6,,), 6,); hence
|5@ = R[p)(1,0,,...,8,-,) by 6.11. The prcjrof is complete.

Comblmng 269 and 9.8, one gets a Normal Form Theorem for regular
terms.

Proposition 26.10. For every regular term ¢, every ¢ and » not less than the
number of the free occurrences of @ in ¢ there is a term Y frec of I and
p-operation such that 8¢Fr(yy) and

o =TV, 03, .. 60+ 3)]

The proof of 23.1 suggests that [] is equivalent to looping and indeed
this can be formally expressed by the equalities uf.(P— 1, o) = P[¢P],
[@] = (u0.(Ev—1I, K@f)K, 0 not free in ¢, which are easily deducible in 45.

As far as the construct {) is concerned, we know that its implementation
requires an extra counter. For this purpose we introduce the following
extension of the formal system g,.

System s,. Its language %, extends &; by adding new function constants
L,,R,, K,, a new predicate constant Ev, and, eventually, another predicate
constants Ze,. The new axioms are
LL,=L,L, LR, =R,L, LK, =K,L,
RL,=L,R,RR;=R,R,RK;=K,R,
KL,=L,K,KR; =R;K,
EvL, = L,Ev, E¥R, = R,E%,
L,Ev,K,=L,R,Ev,K, =R,
LEv, =(Ev,— L2 LR), REv, = (Evy — RL, R?).

Ch. 26] Mathematical theory of programs 207

a4 €xtends 4 in such a way that 26.6-26.10 hold for #,-terms and
44-deducibility as well. Thus we come to the following Recursion Elimination
and Structurization Theorem.

Proposition 26.11. Let Fr(g)={P,,...,P,, #,,...,0,}. Then there is a prime
canonical term i such that

L—aﬁl‘Lz = Lzﬁ;, P.,-Rz = Rzﬁ‘-, l<i<m, jLz = L?_QJ_,
OR,=R,0,1<j<n—@=4.

In view of 26.6 ¢ may be assumed canonical, so the proof formalizes that
of the implication (3)=-(2) of 23.1. The new axioms of s, ensure that
W = Ev,K,, W, = L,, W, = R, satisfy the assumptions of 21.10. In particular,
{IYL,=L,{I)and {I>R, = R,{I} follow from Scotf’s rule.

In terminology of chapter 23 prime canonical % ,-terms are structured unary
C-schemes, while in general % 4-terms are unary recursive C-schemes. There-
fore, every unary recursive C-scheme is equivalent by 26.11 to a structured
unary C-scheme, provided its free variables are interpreted by predicates and
functions which do not use or affect the second counter. The proofs of 9.15%,
21.10 actually give an algorithm which transforms recursive program schemes
into recursion-free ones. While this result has already been mentioned in
chapter 23, we point out below that it also holds for other classes of program
schemes.

So far %5, #,-terms have been regarded as single-valued unary recursive
schemes, which assumes that terms are interpreted by functions @:w x M—
—wx M, respectively @:0w®x M——w?x M, interpreting predicate
symbols by predicates P:a» x M—— {0, 1}, respectively P:w? x M—— {0, 1}.
However, examples 22.1, 21.1, 25.1, 25.2, 25.7 provide other interesting inter-
pretations for s, which can be extended to interpretations for ss, a4 by
introducing appropriate kinds of predicates. (The third and fourth axioms
for conditionals will have to be modified or dropped in some cases. These
axioms as well as the first and fifth axioms for conditionals and 80 = O were
used in no proof in this chapter.) Consequently, %5, £, -terms could also
be regarded as multiple-valued, fuzzy, probabilistic etc. unary recursive
schemes. Further details are left for the exercises.

Unary recursive schemes can be turned into n-ary ones by adding to the
languages ¥, ¥, constants I, 1 <isj<n, as in chapter 23. Similarly, a
stack can be introduced by adding to %, &%, new constants Si, So;, | <i<n.
While we are not able to suggest satisfactory axioms for I or Si;, So, no
additional axioms are needed to reaffirm 26.6-26.11 except that the new
constants should commute with L,, R,.

It is noteworthy that the interpretations discussed above and, perhaps, all
those interesting from the standpoint of Computer Science validate the
infinitary (£££)-rule

=0, Rin=0
2oR[p] =0

208 Connection with other theories [Part F

where the terms «, are constructed from I, L, R by multiplication. Therefore,
the structures used for those interpretations have the representation property
so that all recursively axiomatizable extensions of o (including 4,43, 4,)
are incomplete with respect to them by 26.2.

Writing a,b,c for formulas of a certain language and introducing the
formula construct {a}¢{b}, one may use the following Hoare-style inference
rules for proving partial correctness of structured %, -programs.

{a}o{c}. {c}y{b}
{aloy{b}
{a}Lip{b}, {a} R,y {b}
{a}e. (b}
{a}Rl {a}a {H}qu’L{b}# {b}R{b}
{a} o) {b} i

{a}L,{b}, {a}R, p{a}
{a}[o1{p} ~°

where L, = (I,0), R, = (0, I). (Compare with Hoare [1969], Apt [19817.) If
% ,-terms are interpreted by single-valued functions, then {a} ¢ {b} says that
whenever a(s) is true and ¢(s) = t, then b(t) is true. Inversely interpreted rules
are helpful too, with {4} {b} meaning that whenever ¢(s) =t and b(t), then
a(s). The correctness of these two interpretations is shown in the exercises.

More generally, the systems considered in this chapter can also be related
to certain varieties of Dynamic, Algorithmic, Process etc. Logics, thereby
bringing these logics closer to ‘real life’,

EXERCISES TO CHAPTER 26

Exercise 26.1. Given a system of inequalities ¢; < 0, 1 < i < m, where @, are
(regular in 6,,...,0, and regular) .#,-terms, show that there are (regular)
ZLy-terms oy,...,0,, such that 8,,...,0,, are not free in them, L—cp[[al,.“,crm/
Op-0p) <o 1 <i<m, and |-, <8, 1 <i<m—0,<0, 1 <i<m

Hint. Induction on m. If m— 1, then take o, = puf,.¢p,. Given a system
¢:<0, 1<i<m+1, take 0 = b+ 1.¢p4 1, then take ay,...,0,, to corres-
pond to the system ¢;(6/0,,+1) <0, 1 <i<m by the induction clause, and
Tms1 = 0(0y,...,0,/0,,...,0,). (Respectively, use the fact that whenever o, ¥
are regularin 0,,..., 0, and regular, and ¢ is regular in 0, ,, then @(//8,,)
is regular in #,,...,0,, and regular.)

Exercise 26.2. Show that for every (regular) .Z,-term o there is a system
@<, 1<i<m such that ¢, are of the form I, 0,00, (respectively,
k#1,...,m) or (P—0,,0,) and o is the first component of the least solution
of that system in the sense of exercise 26.1.

Hint. Use induction on the construction of ¢.

Ch. 26] Mathematical theory of programs 209

Exercise 26.3. Given an interpretation of %5 such that the axioms and rules
of 45 apart from Scott’s rule are valid and condition (**#) is satisfied, show
that Scott’s rule is also valid.

Hint. Follow the proof of 18.14.

Exercise 26.4. Let & be a (##*)-complete OS such that (L,R)<I and
@0 = O for all ¢. Extend it to an interpretation of s;.

Hint. Take (P — o,)= (Lo, Rijr).

Remark. This construction is not as unsatisfactory as it may seem. Indeed,
the equality (P — @,) = P(¢, y) suggests that the expressive power of 45 is
hardly increased by the presence of predicate variables.

Exercise 26.5. Add a new function constant F to .#; and find an inter-
pretation for which the axioms of 45 and (p) are valid., while Scott’s rule is
not.

Hint. Take the IOS &’ of exercise 19.5 and interpret terms by members
of the subspace consisting of all ¢’ such that ¢'(0)= 0. Define (P— @', y/)
as (Lo’, Ry"), where L= 1¢.4s.0(3s), R = Ap.As.¢(35 + 1). Take LO <! for
¥ and interpret F as the element p’ of the hint to exercise 19.5. Then ‘Y(0/0)
and ¥ —W(F(I, 0)/6) are valid but ¥(u0.F(1, 6)/8) fails.

Exercise 26.6. Let . be the 10S of example 21.1. Consider fuzzy predicates
P:M x {0,1}—E. Interpreting conditionals by (P— ¢, ¥)(s, t) = sup {inf { P(s, 0),
@(s, 1)}, inf {P(s, 1), Y(s. 1)} } show that the axioms and rules of 45 are valid,
provided > is substituted for =in the third and fourth axioms for conditionals.

Taking E={L, T} in particular, one gets interpretations by multiple-
valued functions and predicates.

Exercise 26.7. Let s be the 10S of example 25.1 (example 25.2). Consider
probabilistic predicates P:M x {0, 1} — [0, oo] (respectively, P:M x {0,1} —
[0, 1] such that ¥s(P(s,0) + P(s, 1) < 1)). Interpreting conditionals by (P —
@,) (s, 1) = P(s,0)ep(s, 1) + P(s, 1)(s, 1), show that the axioms and rules of 45
apart from the third and fourth axioms for conditionals are valid.

Exercise 26.8. Prove that the Hoare rules suggested at the end of this chapter
are valid, provided #,-terms are interpreted by members of example 22.2.

Hint. The rules for <, IT are verified directly. Supposing {a}R,{a},
{a}LioL{b} and {b}R{b} true, show that the set & = {0/{a}@{b}} is closed
under the mapping 46.(pL, #R). Use 18.2 to get (¢ yeé. Similarly for [1.

Exercise 26.9. Prove that the Hoare rules are valid, provided .#°,-terms are
interpreted by members of example 22.1, where {a} @ {b} is true iff whenever
te@(s) and als) 1s true, then so is b(t) (or whenever te(s) and b(z), then a(s)).
Systems oY, 5. The systems s,,s; extended by adding a new crop of
function variables x,x,,x,,..., function constants K,—K,, a term

210 Connection with other theories [Part F

construct St(g), axioms St([)Ko= K, yKq=(xL,xR), St(SH{I)K,=K,,
Y12 K Ky = 1%, KiK. =1, xS1(6) = 0y where g, x,, x, range over #-terms
(K3, %, xy,... are &-terms and whenever y,,y, are ¥-terms, then so is
r1x2K,), and the rule

®—oxy < pxo
¢— St(e) < St(p)s’

where x does not occur in (_ﬁ @, W, p,o. Finally ¥ is allowed to stand for
St(0) < St()r in (p).

Exercise 26.10. Prove that 26.6, 26.8 hold for +%. Establish an analogue
to 26.7.

Hint. Show that St is a t-operation in o7,

CHAPTER 27

Skordev combinatory spaces

The present approach belongs to the algebraic-axiomatic trend in Recursion
Theory started by Skordev [1976]. In a series of papers Skordev develops
a general theory of recursion on the specially designed algebraic system of
combinatory space and studies a wide variety of interesting spaces to represent
certain particular concepts of effective computability, as well as to introduce
such concepts in new areas. Most of the work on the subject has been carried
out by Skordev himself, and his book Skordev [1980] offers a comprehensive
presentation.

This chapter examines Skordev combinatory spaces from the point of view
of operative spaces. Roughly speaking, the former are OS with a storing
operation, with the translation operation eliminated in the case of iterative
spaces,

We present the notion of combinatory space in a recent version proposed
by Skordev [1980a] with somewhat different notation. A combinatory space
is a 9-tuple

$*=(#,1,%,11*, L¥, R*, %, T F),
where # is a partially ordered semigroup with unit I IT*: %% > T.FF

is monotonic, ¢ =< #, L*, R* T,FeF , T #F,€TC %, CF <%, 11"%,4) <%
and

Vx(xp < xy)=¢ <V,
(%, Y)*¥L* = x, (x, Y)*R* =y,
x(@, Y)* = (xo, x)*,
oL, xy)* = (@, xy)*, Yix I* = (x.¥)*,
x(x = @) =[xz = %@, X¢),
20 = x, xib) = (1 = x0, x),
(x=e.¥)p =~ op.¥p)
(T-p¥)=0, (F=oy)=V,
where (¢, ¥)*, (x = @, W) stand for TI*(g,¥), Z(z, @,¥) and x, y range over %.
Take for example & = {¢/p:0— -}, €={it.s/sew}, the operations

o,IT* and branching of chapter 2 for o II*, X and the elements
o —y, considered there for L* R*,I.T,F. Then &* =(F.1%,11% L",

211

212 Connection with other theories [Part F

R* X, T, F) is a combinatory space. Some higher order examples will be
given in the exercises.

An element ¢ is normal iff €p = %. For example, I, T,F are normal. It
follows easily that all normal elements ¢ are left distributive with respect to

IT*, T, ie. @(p,0)* = (gp, pa)*, ¢(x— p,0) =(px— ¢p, @o) for all 3, p, 0.
The following assertions are due to Skordev.

Proposition 27.1. If ¢, are normal, then (¢, y)* L* = ¢. If ¢ is normal, then
(@ Y)*R*=y.

Proof. If @,y are normal, then
x(o,) L* = (xp, xy)*L* = xo
for all x; hence (@,)*L* = ¢.
It follows that y(x,I)*R*=(x,y)*R* =y for all y, hence (x,I)*R*=1.
Therefore, if ¢ is normal, then
x(@, Y)*R* = (x@, xy)* R* = xth (xp, I)* R* = xifI = xif
for all x; hence (@, Y)*R* = .

Proposition 27.2. xy=y.
Proof. xy = x(I, y)*R* = (x, y)¥*R* = y.
In particular, 27.2 implies that all the elements in % are normal.

Proposition 27.3. (p, [)*(L*x — R*@, R*Y) = (px — @, ¥).
Proof. We have
x(p,)*(L*y = R* @, R*Y) = xp(L, x)*(L* — R* @, R*§) = xp(x = x¢, x)
=(xpx—x@,xy) = x(px—=¢,¥)
for all x, which completes the proof.

Proposition 27.4. (xT—¢,¥) = ¢, xF —> o, ¥) =1.
Proof. Using 27.2, we get
Y(xT— @,) = (xT - yo, W) = x(T = yo, yy) = yo

for all y, hence (xT — ¢, ¥) = ¢ and similarly (xF — ¢,) =y. The proof is
complete.
The components of #* enable us to construct a companion OS &

Proposition 27.5. Take [I(@,y)=(L*—>R*p,R*)), L=(T,I)* and R=
(F,I)*. Then & =(#,I,T1, L, R) is an OS.
Prool. IT is obviously monotonic, while
(0, ¥)yx = (L* = R*@, R*{)y = (L* > R*@y, R*7) = (91, ¥ %),
L(g,) =(T,(L* > R*¢, R*Y) = (T—> ¢, ¥) = ¢
by 27.3 and similarly R(e,{) =y, which completes the proof.

Ch. 27] Skordev combinatory spaces 213

Proposition 27.6. (x — ¢,¥) = (1.)*(@, ¥).

This follows from 27.3.

If the spaces &*,.% are to be in some sense equivalent, then their initial
operations should be expressible in terms of each other. Since there is nothing
in & to match IT*, we introduce the additional operation St = Ap.(L¥, R*¢)*.
Some elementary properties follow to show that St is a storing operation
with a corresponding set Z =%, where X =(x,[)*. Notice that all X are
normal.

Proposition 27.7. XSt(p) = @X.
Proof. %(L*, R*@)* = (XL*, xR*p)* = (x, p)* = @X.

Proposition 27.8. If ¢Xy < pXo for all X, then St(o)Y < St(p)o.

Proof. We have (x, ¢)* < (x, p)*o for all x. Multiplying on the left by yR*,
we get (x, yR*@)*{ < (x, yR*p)*o for all x, y; hence (I, yR*@)*yy < (I,yR*p)*a.
Multiplying on the left by yL* we get (yL* yR*o)*y < (yL¥,yR*p)*o
for all y, which implies St(o) < St(p)o.

Proposition 27.9. (p,/)* = K§St(p)KTSt(y), where K§=(I,)*, Ki=
(R*, L.
Proof. We have
xK ¥ St(@)K ¥ St(y) = xZSt(@) KT St(Y) = xpXK ¥ St() = xo(I,x)* St(¥)
= x@(I,xy)* = (x@, xy)* = x(@, y)*

for all x. The proof is complete.

Proposition 27.10. £K,=(%L,%R), where K = St(J)(R*L* - St(R*)L,

St(R*)R).
Proof.
XKy =(XR*L*— xSt(R*)L, £St(R*)R)
=([*— R*%L, R*%R)= (XL, %XR).
Proposition 27.11. 7K, =(y, x)* where K, = St2(I)St(K ¥)(R*L*,
St(R*))*K*%.
Proof.

FFK, = (v, L X)*(R*L*, SHR*)* KT = (I, y, \)* KT = (3, x)*, I* = (5, 0)*".
Proposition 27.12. (y,x)* "K, = £, where K, = KF(R*L*, St(R*))*Si(K¥).
Proof.

(3, x)* "K = (I y, X)*(R*L*, St(R*))* St (KT) = (. 1, x)*St(KT)
=(p.x,I)* = Xj.

Proposition 27.13. St is a storing operation.
This follows from 27.7, 27.8, 27.10-27.12.

214 Connection with other theories [Part F

An element ¢ is polynomial* in =% iff eecl({I,L*,R*T,F}u
B/o, TT*, 3).

Proposition 27.14. The following are equivalent.
(1) ¢ is polynomial* in 2.
(2) ¢ is polynomial in %, u St(%4), where

Bo = {R*, St(T), St(F), St(K%), St(KT), St(L¥), St*(R¥)}.

Proof. The implication (2)=-(1) is immediate. Assuming (1), an easy
induction on the construction of ¢ using 27.9, 27.6, 10.12, 10.13, 10.16 shows
that St(e) is polynomial in %yu St(#); hence so is ¢ since ¢ = LSt(@)R*.
The proof is complete.

A subset & of F is a regular* segment iff & = {0/y0p < tforall (y, p,t el }
for a certain o < {@p/€p =%} x #2 Assume from now on that the space
S* is iterative in the sense of Skordev [1980]. That is, an ireration operation
[, 1:F*>% exists for which (Y= 1,¢0[e,])=[@,¥] and [@.] is a
member of all regular* segments closed under A6.(y — I, @8).

Proposition 27.15. The companion OS % of &* is iterative. Moreover, the
axiom pA, holds for mappings A8.(I, @8) and the assertion of 5.7** holds.

Proof. Taking [¢] =[R*¢, L*]R*, we have

(I, pLo]) = (L* = R*, R*@[R*@, L* |R*) = (L* - I, R*@[R*¢, L*])R*
=[R*@, L*]R* = [¢].

Let us show that [¢] is a member of any regular segment & closed under
A8.(1, @0). Consider the regular® segment &* = {#/0R*c&}. If 6c&*, then
BR*ed’; hence (L*— I, R*@B)R* = (L* — R*, R*@OR*) = (I, pfR*)e&, which
implies (L* — I, R*pf8)e&*. Therefore, [R*p, L*]e&*; hence [¢]eé.

In order to apply 5.13, we construct an operation { », suchthatiid¢), =
on for all n, .

Let ¢ = (L*? —(L*R*, R*R)*L, (L* R*, R*R)*R). Then

x(0, pk)Y* o = (x0, xpk)*c = x¢k(x0, I*6 = xk(xT — (x, R* L,(x, R}*R)

= x¢@k(x,R)*L=(x,xpk + 1)*L=x(I, pk + 1)*L
for all x; hence (0, pk)*a = (I, ok + 1)*L, while
x(n+ 1,0k)*0 = xok(xn + 1, I)*o = xok(xnF — (xn, RY* L, (x#, R)*R)
= x@k(xi, R)*R = (xfi, xpk + 1)*R
for all x; hence (n+ 1, 0k)*a = (7, 0k + 1)*R.

Take (¢}, =(L* R* [I]@0)*[s]R*. Using the easy equalities (T, p)*c
Lol =p. (AF, p)*[a] = pola], we get

0<9), =(T,1,p0*[c]R* = (I, pD)* R* = ¢,
n+1{@», =(F,n @0)*[c]R*

=(,@0)*o[o]R* =(n—1,pl)*a[c]R* = --- = (0, pA))* o [s] R*

Ch. 27] Skordev combinatory spaces 215

= (I, pn+ 1)*L[c]R* = (L on + 1)*R* = pn+1;
hence i@), = @ for all n. By 5.13, the proof is complete.

Proposition 27.16. [,] = (Y, I)*[o(, I)*].
Proof. Using 27.6 and 6.10, we get

[o,¥] = p0.(¢ = I, 00) = pb.(J, *(1, 00) = (b, 1)* Lo(¥,)* 1.

Proposition 27.17. St is a t-operation whose corresponding set of functional
elements is the set @, of 27.14. The additional assumptions of exercises 10.2—
10.5 are also satisfied.

Proof. The mappings X, = 40,0,.0,0,, T, =10,0,.K(0,,0,), 5 =10.
K [0K,]St(I), Z, = A6.K 6K, and X5 = A0.LOR* are price recursive in %,
and satisfy the equalities (0), (1), (3)-(5) of chapter 10 by 27.15, 10.18. By
27.14, the proof of 27.15 gives a mapping X, prime recursive in %, such
that ¢(Z,) =1 and (@) = Z,(St(¢)) for all . The proof is complete.

Now we are able to show that recursiveness of &* and st-recursiveness
of & are equivalent. The former will be marked by an asterisk to distinguish
it from 1OS-recursiveness of . Of course, an element ¢ is recursive® in 28 iff

weel({I,L*,R*, T,F} B/, Z,[,]).

The notion of mapping recursive* in 4 is introduced via parametrization as
usual.

Proposition 27.18. Let I'F"—> %, n>1, and & < #. Then the following
are equivalent.

(1) T is recursive® in Z.

(2) I is st-recursive in 4.

(3) T is prime st-recursive in Z.

The same equivalences hold for elements.

Proof. Propositions 27.9, 27.6, 27.16 ensure (1)=>(2), while 27.17 gives
(2)=>(3). The implication (3)=>(1) is obvious. This completes the proof.

The last statement makes it possible to derive some basic theorems of the
theory of Skordev combinatory spaces as particular instances of results
established in chapter 10. These include a Normal Form Theorem, an
Enumeration Theorem, a Secton Recursion Theorem etc. The space .% is
(£££)-iterative, which gives by 8.3*** a Representation Theorem for .#* and
yields the implications of 26.1-26.3.

Assume that &* satisfies a slightly stronger u-axiom, namely that every
unary mapping I" recursive* in # has a fixed point which is a member of
all regular* segments closed under I'. Then a First Recursion Theorem for
% is also furnished by 10.8%* (or exercise 10.5) too.

It follows that in this case the companion space . satisfies the axiom
tuA, and the stronger tu-axiom of exercise 10.9. The other assumptions of
exercise 10.9 are also satisfied, provided one takes

K,=R*, K =(I*I*R*?* K¢=(R*L*L* R***.

216 Connection with other theories [Part F

While 27.5, 27.15 guarantee that all (iterative) combinatory spaces have
companion (iterative) OS based on the same semigroups, the converse fails.
Therefore, there are more OS than combinatory spaces.

Proposition 27.19. There is an IOS & whose semigroup & is a semigroup of
no combinatory space.

Proof. Let #,=(%,,I,11,,L,R) be the 10S of example 43 and
F ={peF,/¢ is recursive}. Then & =(F,LII | F>L,R) is a pAs-
iterative subspace of &, by exercise 18.6.

Suppose that .# is a semigroup of a certain combinatory space %% = (F, I,
&, I1*, L*, R*, Z, T, F). Then I ¢% since % would give ¥ = {I} by 27.2, hence
T = F, which is not the case. We shall use the unwinding method to show
that whenever ¢ # I and @o = @, then @(L, R) = ¢. In particular, x(L,R)= x
for all xe%, hence (L, R)=1. That will complete the proof since the last
equality is false.

Let ¢ be a recursive member of # g, ¢ #1 and @@ = @. Then ¢ = 1[4]
with a certain primitive ¢ by 9.3. It follows easily that for all xeZ either
age% or aoell(F,). Start constructing a sequence {a,} such that o, =0,
2,0 =0, R and ¢ =u,0[c]. Then ecither o,0eZ or a,oell(F,F) at the
n-th step. If o,0=fiR for a certain f, then take «,,,=f and continue.
Otherwise stop.

Suppose that o,0=fpL for a certain . Then ¢ = pL[¢]=pf; hence
@(L,R)=¢ by ¢ #1.

Suppose thate,0 =1 or 0,0€ll(F, #). Then pell(#, #); hence p(3k + 2)T
for all k. If ¢(s) is not of the form 3k + 2, then @(L, R)(s) = ¢(s). Supposing
@(s)=3k+2, onc gets @(p(s))T contrary to the equality @(e(s)) = ¢(s).
Therefore, o(L, R)(s) = ¢p(s) for all s; hence @(L, R) = ¢.

If an infinite sequence {a,} is obtained, then ¢ =0 by (£££); hence
¢@(L, R) = ¢ again. This completes the proof.

To further elucidate the connections between OS and Skordev combinatory
spaces it is desirable to characterize those OS augmented by the storing
operation which have companion combinatory spaces.

EXERCISES TO CHAPTER 27

The first five exercises are due to D. Skordev.

Exercise 27.1. Let #* be a combinatory space. Prove the following equalities.
a. ((x=> @) p)* =(x = (e p)* (¥, 0)*).
b. ((x—= @)~ p,0) =(x— (@ —p,0), () —p,0)).
. (p=(o=0.¥)(0—=11)= (0= 9.2, (p=¥,7))
d. (I, o)*KT = (@, I)*, (o,)*KT = (I, 0)*.
- (@ Y)*St(x) = (. yx)*.

w

Exercise 27.2. Assuming that 5* meets the stronger axiom (xe,[)* =
(x¢,Yr)¥*, prove the following equalities.

Ch. 27] Skordev combinatory spaces 217

a. plxy— @)= (xx—pe.p¥).

b. (@, ¥)*KT =(¥, tp)*

c. (@ U)*(L*p, R*a)* = (qp,Yo)*.
Hint for a. Use exercise 27.1a to get

plxx = @.p) = plx(x— T, F),)*(o,y) = (x(x = T, F), p)*(ep, V)
=(xx— p@, pY).

Exercise 27.3. Let &* be iterative and let % be its companion 10S. Prove
that (x— @, ¥) = (1, RF[R*YL] [pL].

Remark. It follows in particular that (e,¥)=(L* R)*[R**yL][R*eL];
hence the operations X,I1 can be eliminated respectively in &%, &.

In the following two exercises #* is assumed to satisfy the axiom of
exercise 27.2 and to have an element U* such that x, ¥ R* < U*, U*x < x
for all x. Such an element exists in the spaces corresponding to examples
21.1-21.3 but not examples 21.4, 22.2, 22.4, 25.1-25.4. In the sequel U stands
for (U*, I)*.

Exercise 27.4. Prove the following assertions.
U*x=x, UR*=1.
Vx(Zp<t)=Up <t
xU*=U*,
USt(p) = ¢U.
UK,=(0OL,TR).
U0 =UK,.
g St(0)= ﬁsﬁu)(R*L* St(R*))*.
Hint for b. If Vx(%¢ < 1), then St(¢) < St(I)R*z by ($). Multiply on the left
by U.
Hint for c. Vx(¢ < xy) implies Vx(xp <).

=0 B TP

Exercise 27.5. Show that g is recursive* in {U*} L iff there is a recursive®
in # such that ¢ = Uy.

Hint. Using exercise 27.4, show that ¢ = UR*p, UpUy = UK ,St(p)),
(O, 00)= OKoloy), St(Up)= US(IN(R*L* St(R*)*St(¢) and
[U¢] = UK,[K,St{p)K,]R*. For the last equality observe that [¢] is a
member of all regular* segments closed under 46.(I, 50) by the proof of 27.15.

Remark. This exercise establishes a normal form for search computability
by 24.4, 27.18.

Exercise 27.6. Let (M, J, L, R) be a pairing space, let E be a partially ordered
set with at least two distinct members, let Q:M x E*> - Eand let T, F:M - M
be monotonic such that Q(T(s).e,d) = e, Q(F(s),e,d)=d for all seM,e,deE.
Take

M’ = {@/¢:M — E& ¢ is monotonic},
={¢p/p:M x M'>E&d is monotonic},

218 Connection with other theories [Part F

where ¢ is monotonic iff whenever s < 1, @ <, then ¢ (s, @) < ¢(r,). Also take

%, ={c* = Asp.p(c)/ceM}, p <V il Vso(¢(s, @) < V(s, @),
PV = Asg. @(s, AL W(t, 0)),
IT*(¢h, W) = As@. (s, At. W (s, Ar.@(J(t.7)))),
(X, ¢, W)= As@. X (s, it.Q(t, p(s,), ¥(s,9))),
I = As@.@(s), L* = Ls@.@(L(s)), R* = As¢.@(R'(5)),

T, = Asg.(T(s)) and F| = As@.@(F(s)). Show that &* =(F ,1,,6,,11*, L¥,
R* Z,T,.F,) is a combinatory space.

Remark. Smaller M’ and %, may also be taken provided the above
definitions still make sense. This generalizes a construction suggested in
Skordev [1980a], examples 4, 5, which can be obtained by taking the pairing
space of 16.1 for (M, J, L, R').

Exercise 27.7. Let.%*, E be as above and suppose that all well ordered subsets
of E have least upper bounds. Show that .%* is iterative.

Hint. Following the proof of 18.13, show that every monotonic mapping
I''% |, — %, has a fixed point which is a member of all regular®* segments
closed under I

Exercise 27.8. Let (M,J, L, R'), E,Q, T, F be the same as in exercise 27.6 and
N be a nonempty set. Take

M' ={¢/p:M x N— E& ¢ is monotonic},
F={¢/¢p:M x N x M'—» E&¢ is monotonic}.

Modify the construction of exercise 27.6 to get a combinatory space .#*
based on #, and prove that it is itcrative, provided all the well ordered
subsets of E have least upper bounds.

Hint. Take c* = isx@.p(c, x),

PV = Asxo. (s, x, Aty (L, v, @)).
(b, ¥)* = Asxe. (s, x, Aty. W(s, v, Arz.o(J(t,7), 2))),
(X =, V)= Asxe. X (5,x,Aty. Q1 d(s, x,¢0), ¥(s,x,¢))) etc.

The following exercise shows that hierarchy OS are rich enough to have
companion combinatory spaces.

Exercise 27.9. Let 7, &', & be consecutive OS and suppose that %" admits
a transfer operation Tf. Using exercise 27.6, construct a combinatory space
F* based on %" such that whenever %* is iterative, then so is %" and
relative recursiveness® is equivalent to (prime) tf-recursiveness.

Hint. Take E=M=%#, J=II, Qo ¥)=xle.¥), T=L F=R,
M=%" and F,={¢:F x F' > F[10'.20.$(6,0)e F"}; one need not
distinguish between %, and #". The operation IT* is correctly introduced
by exercise 14.2. Assuming * iterative, construct a companion 10S ., by
27.5, 27.15. Use exercise 14.1 to show that T/ =St. Apply 27.13, then pass
from &, to %" by exercise 7.2.

CHAPTER 28

Recursive functionals

This chapter deals with some initial concepts and results of a recursion theory
on monotonic functionals comparable with the theory developed in the first
part of Kechris and Moschovakis [1977], thus paving the way for an adequate
approach to Kleene-recursiveness in higher types presented in the next
chapter. There is also a direct connection with the topics of chapter 30.

Given two arbitrary sets M, N, we recall that ¢: M — — N is a single-valued
function and write # for the set of all such functions. A monotonic single-
valued functional is a ¢: M x #F—— N such that whenever ¢(s, ¢) =u and
@ <, then ¢(s,) = u. We are interested both in functions and functionals
recursive in functionals, where the relevant notions of recursiveness are to
be provided by an appropriate 10S.

Proposition 28.1 (Example 28.1). Let M, N be nonempty sets and f, f, be
a splitting scheme for M. Take

F={¢/¢p:M x F—— N&¢ is monotonic},
¢ <V iff ¥ is an extension of ¢,

W = Aso.d(s, At.\F(t, p)),

I, (¢, ¥)(f1(s), @) = (s, @),

I, (e, W) (S 2(5),) = (s,)

and I, (¢, ¥)(s, @) T otherwise, I, = As@.@(s), L, = is@.o(f,(s))and R, = is¢.
@([5(s)). Then &, =(F,1,,I1,, L, R,) is a (#*),-complete OS.

Proof. Taking II(e, ¥)(f1(s)) = o(s), TI(e, ¥)(f2(s) = ¥(s) and I, Y)(s)T
otherwise, L' = A¢p.As.Li(s, @) and R = ig.As.R (s, @), the quadruple .%¥ =
(#.11, L, R') is a subspace of the pairing space of 164 withE= {1, T},e= 1,
restricting oneself to single-valued ¢. Proposition 16.10 implies that & is
strongly complete.

Let &' be obtained from & by 19.9. Then %’ is a (*#),-complete OS;
hence so is its isomorphic copy &,, assigning to each mapping ¢ F =%
the functional As¢.@'(@)(s). The proof is complete.

While the operations translation and iteration of & are introduced by
{p)=pd®.(pL,,®R,), [¢] = u®.(I,, $©), the following statement character-
izes them explicitly in the spirit of 3.4. Indeed, example 3.2 is a particular
instance of example 28.1.

219

220 Connection with other theories [Part F

Proposition 28.2. Let %, be the IOS of example 28.1. Then

<O (3S1(5)), @) = (s, At p(f5(f1(1)))),
A(,) (2(11(5), ©) = ¢¥"(s, @)

and (> (s, @), AP, W)(s,)T otherwise. The function ¢ = As.[¢](s,) is the
least satisfying the equalities

o(f1(8)) = o(s), a(f3(s)) = &(s, 0).

In other words, o = uf.(o, 1s. ¢(s, 8)).

Proof. The operation IT, is continuous by exercise 18.1 since (L, R;) < I,.
Therefore, A(¢, V) =sup,, ®,, by exercise 18.4, where ®, =0, = 1s¢.{ and
Q,+;=(¢.09,P). An easy induction on m gives that @, (f5(f1(s),p) =
¢P"(s, @), if n<m, and O, (s,9)7 otherwise, which implies the desired
characterization of A and that of {) by 6.32.

The characterization of [] follows from the proof of 12.25. This completes
the proof.

Example 28.2. Let M, N;, N be nonempty sets and let f,, f, be a splitting
scheme for M. Take the [0S &, =(% ,1,,I1,,L,,R,) of example 28.1 with
M x N, Asx.(fy(s). x), Asx.(f5(s), x) playing the role of M, [, f>. Then

F ={¢p/o:M x N,—— N},

Fi={p/¢:M x N; x F—— N &¢ is monotonic},
O¥ = Asxo. P(s, x, Aty. F(t, v, 0)),

(‘Pp LP){fl('g]! X, qo) 5 ¢(S, X, (P):

(¢9 q,){fz(s}'r X, (P) = l‘P(S, X, @}»

and (¢, ¥)(s,x,¢)T otherwise, I, =Asx¢p.¢(s,x), L; = Asx@.p(f,(s),x) and
Ry = Asx@.q(f,(s), x).

Proposition 28.3. The initial operations of example 28.2 may be characterized
as follows.

LOO(5(f1(9)), x, @) = @ls, x, Aty. o(f5(f (1)), ¥)),
A(p, F)(f5(f1(5), x, 0) = ¢F"(5, X, @)

and {$ > (s, x, @), Alp, F)(s, x, ¢)T otherwise,

Asx. [@](s, x,) = pb. (@, Asx. (s, x, 0)).

This follows from 28.2.

While example 28.2 is a particular instance of example 28.1, an isomorphic
copy of the latter can be obtained from the former by taking a singleton for
N,. In the sequel we shall speak about example 28.1 in some instances and
example 28.2 in others, bearing this connection in mind.

A general theory of recursive functionals could have its starting point in
the theory developed in part B of this book. The central notion is that of a
functional ¢ recursive in a collection of functionals #, € # ,, for which the
following three characteristic theorems hold in paticular.

Ch. 28] Recursive functionals 221

Every functional ¢ when recursive in %, has a normal form ¢ = I[X] with
a certain L primitive in 4, by 9.3. A similar normal form is assumed in the
very definition of the corresponding notion of #-recursiveness introduced
by Kechris and Moschovakis [1977].

Whenever 4, is finite, then there is by the Enumeration Theorem 9.18 a
functional X recursive in 4, such that every functional ¢ recursive in %,
equals AZ for a certain n.

Whenever a mapping I':# | —.% | is recursive in %#,, then its least fixed
point u®.I(®) is recursive in #; by 9.13* This assertion seems stronger
than the First Recursion Theorem (also called Induction Completeness
Theorem) 3.3 of the cited work, which is rather an analogue to 6.16. Take
for example ¢ = u®.(I,, PO?), the least functional satisfying the equalities
B(f,(5), @) = (s), O(f5(s),) = V(5. &t.O(t, ir.O(r, ©))). Proposition 9.13*
implies that ¢ is recursive in ¥, while the First Recursion Theorem of
Moschovakis says nothing about ¢.

Among the interesting functionals to be taken in %, are those embodying
quantification. Given a monotonic quantifier Q over M, we define a
corresponding functional Qyy,

Ll RI[SS q:)],, if OI[Li(ts (P} — 0)1
Qu(s,0) =< Ri(s, @), if @t 1(Ly(5, @) =0),
iF otherwise,

where 0 is a fixed number of N. Notice that

(s, @), if QUX(t, @) =0),
Qu(X, ¢, P)(s, 0) =< (s, 9), if Q“t(X(,) =0),
T, otherwise.

In fact, Q,, is the mapping Q, of exercise 13.1 slightly modified to over-
come the obstacle that & is a pairing space rather than an OS. Similarly, if
N,=N'x N" and Q is a monotonic quantifier over N', then the functional
Q- such that

ON'(S’ Xi, 3\'“, QD} == Ll Rl(ss I'-,)C”, (p}..]r Qy((Ll(Ss }"» x”v qﬂ] = 0}
Qu (5, %, x", 0} = R¥(s, X', x", @), if Q7Y (Ly(s,), x",) =0)

and Qy.(s, X, x", @)1 otherwise, embodies Q-quantification.

As far as functions recursive in functionals are concerned, the theory of
chapter 13 applies in part since & is now only a pairing space. While for all
functions YeZ the functionals ¥ = Asg.y(s) are in # ,, there is no multi-
plication in %, hence no functionals i, Id, M1 (Multiplication can sometlmes
be introduced. Whenever N = M, then one may define @y as Asx.y(o(s, x), X),
thus transforming % into the IOS of example 22.4.)

The central notion of %, -recursiveness corresponds to #'-recursiveness of
chapter 13. Given a subset 4, of #, and a nonempty subset # of 7, a
function ¢ is 2,-recursive in 7 iff the functional ¢ is recursive in BUB,,
while a mapping I':F =% is #,-recursive in % iff the functional

222 Connection with other theories [Part F

[Y = Aso.T(¢)(s) is recursive in £ U %,. Notions of prime #,-recursiveness,
2 -primitiveness etc. are also introduced.

Ordinary properties as 13.1-13.7 hold in the present context. Others such
as 13.8, 13.9* cannot now be claimed or even formulated. Sparse as the
present theory may be, it includes the following key Normal Form Theorem,
First Recursion Theorem and Enumeration Theorem. (Given are nonpara-
metrized versions.)

Proposition 28.4. Let #, = %, be as in chapter 7 and let ¢ be #,-recursive
in 8. Then ¢ = L'(pf.1°(0)) for a certain I" such that I'” is a member of #
strictly polynomial in U %, (A&,). (Therefore, I is %,-primitive in 2.

Proof. Recall that 4, is a finite set of primitive functionals such that
cl(#y/=,[1) contains all the recursive functionals. It follows from 7.11,
12.32 that ¢ is prime recursive in 4 U B, U (8, ». Repeating the proof of 13.11
with Id replaced by for a certain ye 4, we get the desired normal form.

A modified version of 13.15 asserts that whenever ¢ is %,-recursive in 4,
then

@ = L(R'(u0.T((Yo, .., Y, 0, {T'1 3(0), .., KT, (@)))),

where rq,... W, e#, IT'Y,....,I'ye#, and 'V is a strictly primitive member
of #,.

Proposition 28.5. Whenever a mapping I': % — % is #,-recursive in %, the
function pf.17(0) exists and is %, -recursive in 4.

Proof. 12.27 gives (u0.1(8)) = R,[T“R,].

Systems of equalities are easily solved, allowing for simultaneous recursion.

Proposition 28.6. Let #, 4, be finite and let % stand for the set of all functions
2 ,-recursive in 4. Then there is a e which is univeral for %, ie. % =
{L(R™(0))/new).

Proof. Take a Ye# and a functional I recursive in #u#, and
universal for all such functionals by 9.18, then take ¢ = Zlﬁ. The function o will
do.

As the remarks to 13.18 indicate, the essential assumption above is that
4, be finite.

The results of chapter 9 concerning universal elements and mappings
remain valid with minor modifications due to the fact that L, R are no longer
of the form L, R. For instance, the Second Recursion Theorem asserts that
whenever e is principal universal for % and @e%, then there is an # such
that L'(R"(¢)) = L(R"(c)). (A function ¢ is principal universal for % iff for
all pe% there is a natural in the sense of chapter 9 primitive recursive
functional W such that Va(ig = a¥d).)

The following statement introduces a t-operation St in the space .%;. As
a result we have notions of st-recursiveness for functionals and 4%,,st-
recursiveness for functions. The general theory of chapter 10 applies to the
former, while the remarks following 13.20* concern the latter.

Ch. 28] Recursive functionals 223

Proposition 28.7. Let ., be the TOS of example 28.1 and let Mg, J be the
same as in 21.13. Take

St (s, 1), 9) = L, Ar.o(J(5,7)))

and St(¢)(s, @) T otherwise. Then St is a t-operation over # , satisfying axiom
tuA;.
Proof. Take % = M ,, where §= it@.@(J(s, 1)),

KoJ(s, £1()), @) = o(f1(J(s, 1)),
Ko(J(s, £2(0): @) = o(f2(s, 1)),
K, (J(s, J(&, 1), @) = oS5, 1), 7)),
K,(J(J(s: 1) 1), @) = o(J (s, J(t,7))

and KU(S-J (p)a Kl(S, (P]s KE(S: @)T otherwise. 3is
It follows easily that §K,=(5L,.8R,), 5K, =J(t,5)” and J(t,8)K, =35t
for all s,teM,. The equality §St(¢) = $3 and the implication

V(3¢ < S¥)=St(I,)p < St(I,)¥

follow by the definition of S#; hence the axiom ($) is valid by exercise 10.7.
Therefore, St is a storing operation, hence it is a t-operation and satisfies
tuA, by 10.18, 18.21. The proof is complete.

Now we can briefly describe the approach of Kechris and Moschovakis
[1977].

We consider monotonic functionals

P:M" X PI X X PI, ——0,

where 2.9, ={f/f:M*——w}, <M. Given a class of functionals .#, a
functional ¢ is .£-recursive iff

qb(sl'l"'?sn!fl:--‘!fm):\Pm(nl»“'ank!sis---ssn!fls--'sfm)

for certain We.#, ny,. .., n,ew, where ¥ is the least functional satisfying the
equality

G(l}_;---:tn-rk:fh-“sfm}
=\P(f1,.. --rn+ka er...r,,H.@)(rl,...,r”k, fp- --3frn)sf1:-- wfm]'

In order to get a nontrivial theory the class .7 is assumed to be suitable,
ie. to contain certain specific functionals and to be closed under several
operations on functionals. A functional ¢ is said to be recursive in a list of
functionals ¥ ,...,F,, iff ¢ is Fo[¥y,..., P,]-recursive, where T s i
is the smallest suitable class containing ¥,,...,"¥,. Recursion in so called
normal lists in studied, including recursion in functionals embodying
quantifiers.

While .#-recursiveness has its origins in Inductive Definability Theory,
it is worth mentioning that the basic notion of inductive relation is in
turn described via .#-tecursiveness in the referred work of Kechris and
Moschovakis (the ‘boldface’ version) and Kolaitis [1978] (the ‘lightface’ one).

224 Connection with other theories [Part F

We shall establish no precise characterization of #-recursiveness, noticing
only that it is st-recursiveness in the following particular instance of example
28.1.

Proposition 28.8 (Example 28.3). Let w € M and M* = |], M". Take

F={o/o:0 x M*—-> 0},

F, ={d/d:0 x M* x F——w&¢ is monotonic},
QY = Asxe. P(s, x, Aty V(L. y, 9)),

(¢, ¥)(25, x, 0) = P(s, x, @),

(¢, V)25 + 1, x, @) = ¥(s, x, @),

I, = Asxp.o(s,x), L, = Asxp.@(2s,x) and R, = Asxp.@(2s + 1,x). Then &, =
(#,,1,,11,,L,,R,) is a (**);-complete OS. Introduce multiplication @y =
Asx . p(e(s, x), x) in F and take (¢, ¥)(2s, x) = @(s, x), (o, P)(2s + 1,x) = (s, x),
I=1sx.s, L=17sx.2s, R=1sx.25+ 1. Then & =(#%#,I,I1,L,R) and %, are
consecutive 108, (That is, so are & and the isomorphic copy &' of &,
consisting of mappings over #.)

Proof. The IOS &, %, are particular instances respectively of examples
224, 28.2 and they are consecutive by 19.11. This completes the proof.

Explicit characterizations of the initial operations of %, are obtained by
28.3, observing that w= | J,f3(fi(w)). The theory of chapter 13 applies
completely since & is now an [OS.

The following specific functions and functionals may be assumed initial.

Id =lsxp.s, MIl=Asxp.LpRqo(s,x), tho=Asx.R(s)sgs,
Wy = Asx.Ih(x)(s), where lh(ty,....t,) =n,
Wo(s, t, x) = L(s), if tew, otherwise i, (s, ¢, x) = R(s),
Wols, @) = (s, s), Wols, t,x, @) = @fs, s, t,t,x),
W (nls), x, @)= ols, x;), if Ih(x)=n
and x, is x with its first component moved to the n + 1-th place,

Wy (s, L, x, @) = olt, s, X), if tew,
l‘P3(S, t? X, (p) = (P(S$ x)

and ¥, (s, x, @) — W¥,(s, x, @) T otherwise.
The operation St is introduced by 28.7, using the pairing function J((s, x),

(, ¥)) = (Ih(x)s(z), x,).
EXERCISES TO CHAPTER 28

Exercise 28.1. Let % be the 10S of example 28.2 and let My, J be as in
21.13. Take St(@)(J(s,t),x,0)= ¢(t,x,Ary.(J(s,r),y)) and St(¢)(s,x,0)T
otherwise. Show that St is a t-operation satisfying axiom tuA,.

Hint. Take a fixed x,eN, and J,((s, xo), (£, x)) = (J(s, £),x) for all seM,,
teM, xeN,. Then the storing operation corresponding to J, by 28.7 is
exactly St.

Ch. 28] Recursive functionals 225

Exercise 28.2. Show that the operations St introduced by 28.7 and exercise
28.1 satisfy the assumptions of exercises 10.2-10.5, 10.9 for appropriate
functionals K,—Kj. '

Hint. Cf. exercise 21.7.

Remarks. In view of the comments to 10.9, a ‘boldface’ version of the
theory may also be pursued.

Exercise 28.3. Let %, St be as in 28.7 with N = M. Using the same pairing
function J, introduce an operation St, over .# by exercise 21.2. Show that
St(@) = Sty(o) for all @, where § = Asir. @ifi(s).

Remark. Therefore, the isomorphism between the 10S &, & agrees with
the operation St. A similar assertion holds for the operation St of exercise 28.1.

Exercise 28.4. Let &, St be as in 28.7 (exercise 28.1) and M, = M. Construct
an iterative combinatory space &* based on #, such that St is exactly the
operation of 27.13.

Hint. Use exercise 27.6 (exercise 27.8) with E=Nu{l}ands<tiff s=¢
in M.

CHAPTER 29

Higher recursion theory

The notion of Kleene-recursive function with finite type arguments was
introduced by Kleene [1959], enabling the recursion theory of such functions
to grow considerably in the subsequent period. Here we suggest an alternative
approach based on the notion of #-recursiveness of chapter 28, hence quite
similar to the approach of Kechris and Moschovakis [1977]. The latter work
provides a comprchensive introduction to the subject, while this chapter
simply marks the place of Higher Recursion Theory from the Algebraic
Recursion Theory viewpoint.

Take TW =, TU*D={a/*1/al*1: TV 5w} (the members of TV are
called j-objects), T = |), TY and

T*=T"={x=(0y,..., %) /new&n,,...,0,eT},

assuming that the i-objects in x precede the j-objects whenever i <. Let
T = {xeT*/ar(x) = m},

where ar(x) = (no,...,n;), n; is the number of all i-objects in x =(o,...,0%)
for all i < j,. Writing p; for the i-th prime number, the coding function used is
Choyronskyd =plet . pl-* with inverses (<kgs...,k0)i=k; for
i <n and (k) Totherwise.

A function f:T*——w is called m-ary if Dom f = T*. Such functions
with finite type arguments are called functionals in Kleene [1959], but here
the terms ‘function’ and ‘functional’ are used in the sense of chapter 28.

Example 29.1. The 108 .%; of example 28.3 with M =T.
Here, one has consecutive 108 % = (%, [,IILL,R) and &, =(% ,,1,. I1,,
L., R,), where

F ={p/o:0 x T*—-w},

oY = Asx.Yl(els, x), x),

(0, ¥)(25,x) = (s, X), (@,) (25 + 1, x) = (s, x),

[=/isx.s5,L=2Asx.2s, R=1JAsx.2s + |,

F=1{d/¢p:0 x T* x F——>w&¢ is monotonous},
P¥ = Asxo. (s, x, Aty . Y(t, y, 9)),

(p. P)(2s, x, @) = P(s, X, @), (b, ¥)2s + 1, x, @) ="F(s, x,).
=Lk =L R, =R,

226

Ch. 29] Higher recursion theory 227

i standing for Asx¢.(s, x). Other familiar notations are a for LR" or
LR, = Asx¢. (s, x). We also recall that

CPOUs), X, @) = Pls, x, Aty. @(a(t), ¥)),
Asx. [@](s, x, @) = pb.(@, Asx. d(s, x, 0)).
The following functions and functionals are to be assumed initial.
Id =1, Ml = Asx¢.LoRol(s, x),
o= Asx.R(s)sgs,
¥y = Asx.ar(x)(s),
Vols.txl,x)=al(r)
(and ,(s,x)T otherwise; this will often be omitted below),
o = Asx. (s, 5, %), ¥ (kf(s), x, @) = ¢(x,),
where x, is (s, x) with its first j-object moved to the k + 1-th place,
W, ((s), o, x,) = oti(Aerf ~ 2. (s, 8 =2, o, x)), if j > 2,

W, (f(s), x, ©) = (s, x,), where x, is x with its first J-object dropped.
Instead of ¥,,'¥, one may take the ‘more powerful’ 3, ¥, where

V3 (jls)od, o/t x) = ad * (@),
W3 (jls), x, @) = Lo(s, Ao Rep(s, o, x), x).
The corresponding two basic sets 4,

‘xfl = {'FOTJI) 'ﬁb Ida ML lIJ[)’ LFlls lPZs ‘p3}
and
'Yr == {lﬁﬂs lﬁl)’)‘&';u Jd: M!!l Lp[)s ‘Pl!q};?‘l’:i}

give two notions of computability in higher types, # ,-recursiveness and
H | -recursiveness. We recall that ¢ is # -recursive in #=.F iff ¢
is recursive in #u A, in the sense of #,. Functions [:T* ——w are
represented by members f* = isx.f(x) of #, hence f is X ,-recursive in
Yose- gy Ml f* is A (-recursive in gg,...,gf. Similarly for "} -recursiveness.

The original relative Kleene-recursiveness is proved by Kleene [1959] to be
nontransitive, hence it can be equivalent to 8,-recursiveness for no 4,. The
characterization established below shows that absolute Kleene-recursiveness
is nevertheless equivalent to .# ,-recursiveness. (As proved by Kechris and
Moschovakis [1977], it is also equivalent to #-recursiveness.) The exercises
to this chapter show that relative Kleene-recursiveness is wider than relative
X -recursiveness and narrower than relative 2 [-recursiveness.

[t is now time to formulate the definition of m-ary function f Kleene-
recursive in a list of functions g,,. .., g,, where g; is m-ary, i < [. (The following
definition is not exactly the original one but a slightly modified equivalent
version from Kechris and Moschovakis [1977].) For the sake of simplicity
assume that /=1 and say, go:w x TH——aw, g,:TH x T®—o ¢, ie.
mg=¢1,0,1) and m; =<0,1,0,1>. A mapping Q:% — F is introduced via
the following clauses for Q(¢p).

228 Connection with other theories [Part F

0p. Q()(<0, ar(n, x),0,e, >, n,x) = go[n Aot qo(el,rx » X))

0;. Q(ONCO,ar(x), L e4,¢,),X) = g (20°. p(ey,a° x), do>. (e, 0%, X)).
1. Qe)({1,ar(t,x)),t,x)=1t-+ 1.
2.) ({2,ar(x),t>,x)=1.

3. Qo) ({3, ar(t,x)),t,x)=t.

4. U)(<4,ar(x),e,25,x) = le,, (e, x), X).

r, ifm=n,

5

It, m+#n.

6. Q(p)({6,ar(x). j.k. e, >, x) = ple;, x,), Where x has at least k + 1 j-objects
and x, is obtained from X by moving the first j-object to the k+ 1-th place.

7. Q) {7, ar(t,at, x)), tat,x) = ().

8. Qe)({8,ar(a),x), j,e;), 0%, x) = ol (Aol "2 pley, ad, 072, x)), if j = 2.

9. Qo)({g.ar(t,x,y), ar(x)},1,X,y) = ¢(t,).

Otherwise Q{¢)(s, x) 1.

The mapping Q is monotonic; hence o = uf.)(8) exists. Moreover, it follows
from the proof of 18.1 that ¢=0, for a certain ordinal {, where
6= sup,:Q(a,) for all £.

A function f is Kleene-recursive in go,...,g, ll f = Ax.c(e,x) with a certain
index (natural number) e. Traditionally, {e}(x) is written for o(e, x). We shall
also write {e}.(x), {e}..(x) respectively for o.(e,x) {sup,ﬁgcr,,) (e,x). If
(e, x) |, then (e,x) has an ordinal of computation, |e,x| = min {{/o(e,x)| }.

The initial functions g, ...,g, may include j + 2-objects /" ?F,, where Q is a
monotonic quantifier over T(Y) and

TP b if Qu/(o/* (o)) = 0),
a® TN, i@Vt @) £ 0).

. Q)5 ar(r,t,.l,mn,x) >, rtLnnx)=

Kleene-recursiveness in lists a/*2,7*2E has been studied extensively, /" 2E
standing for /* 2F,.

Let f:T*——w be m-ary, writing explicitly f(z,o/**',...,0* 1) with z
ranging over @™, Bearing clause 0 in mind, assign a functional fe#, to f
such that

F(s, 2, x, @) = f(z, Ao/ Dep(s, 0", X), ..., A .k — 1 (s, 0t%%, x)).

The main result of this chapter states that a function f is Kleene-recursive
in go,.oqy Ml [is A U{Gy,... g }-recursive, ie. iff f* is recursive
in %, U{fs.....g; }. In order to prove the ‘only if*-part of the equivalence,
some 4 ,-recursive functions and functionals will be constructed by using
the following auxiliary statement.

Proposition 29.1. For every partial recursive function f:w"—— o there is a
A -recursive function ¢e# such that o(sy,...,s,,x) = f(5y,...,s,) for all x
and ¢(s,x)T otherwise.

Proof. Take I}(s),....5,X) =5, and I}(s,x)T whenever (ar(s,x)), <n,
1 <k < n. It follows that I'] L(s, x) = 2s, provided (ar(s,x)), > n, and similarly
for IR, I'tyy. The characterization established by 22.7 shows that there
is a function ¢ which is recursive in ,, I}, 1 <k <n in the sense of &

Ch. 29] Higher recursion theory 229

and corresponds to f as required. The equalities IT = (n— 10¥,)"Id and
I=(n—10%,)*"'Id for 1<k<n imply that the functions I} are
A -recursive, hence so is ¢. The proof is complete.

Proposition 29.2. If f is Kleene-recursive in gg,....¢; then fis # ', v {gg, ...,

g j-recursive.
Proof. The function f has a Kleene index e, hence f* = ya, where y = Asx.e

is A -recursive by 29.1. But is the universal function o %', U{gg.....d:}-
recursive? Noting that o = uf.€2(f), it suffices by 13.16 to prove that Q is a
Ay U{Ger... G} recursive mapping, ie. Q =Asx0.Qp)(s,x) is a
functional recursive in 4", U {Gor- .. Gi -

There are by 29.1 4 ,-recursive functions @,..., @ such that

Pols,mx)=n+ 1,0, =13, ;= isx.(s), i = 2,3,4,

r, ifm=n,

Belan Ll m.H.x)= {u, if m£n,

@48, X) = (s)o(s)s if if (s)o=1,....9 and lh(s) equals respectively 2,3,2,4,2,5,
2, 4, 3; @els, x) = (5)» (5)o(s), 1[(s)o =0 and either (5), =0, lh(s)=4, or (s} =1,
lh(s) = 5, where lh(s) =n> 0 means that s = {(5)g,- ..+ (Shh-1 -

The function p = Asx. [s] (s) is o, -recursive by 29.1, and there is by 8.1 a
recursive y such that §§x =0 and $§ty=1 whenever s t. Therefore, the
function @;=,{p>y(I,0) is A ;-recursive and ¢-(s, x)=s, provided
() =arlx).

Take ¢o = I_G‘PLO‘P3. Then ¢o(s, 1, x, @) = @(n, x).

Take ¢, = 10¥,. Then ¢, (s, n, x, @) = @(n, s, x) and

W oMK epo®2s § 1035 X, @) = ((5)35 P((5) 25 X), X).

The function p=/isx.(5)3(s),((s),) is A" -recursive. Taking ¢,=
p({ ¢ YR Ly, Ry)Y,, we get that ¢,(s,x,) = @((s)s; X1), if (5)2=J, (s)3=Kk,
(ar(x)); >k and x, is x with its first j-object moved to the k + I-th place.

The function p = Asx.(s),((s)s) is X ,-recursive. Take ¢ = §'¥,. Then
bals, 0, x, @) = /(20 2. ()3, %' 72,0, X)),
provided (s), =j = 2.
Using i, ¥;, ¥, we construct finally a functional ¢, recursive in 4",
such that ¢4(s, n, x, y, @) = @(n, x), provided (s), = ar(x).
It is now evidently the case that

Q" = aﬁﬁﬁ(@ (3. 0,), 91(@3, (15'49 01)); $os P25 P ‘POM"(‘ﬁUﬁo—z»‘f’la)ﬂ
(ra_'n ¢21 ()52! ¢3= qb-h 01)9

hence QV is recursive in 4", U {gg,.... gi}. The proof is complete.

Proposition 29.3. If an m-ary function f is 2", U {gg,...,g;}-recursive, then
f is Kleene-recursive in gg,....4;-

230 Connection with other theories [Part F

Proof. We are going to show that for every functional ¢ recursive in
Ay u{Gs... g} there is an index e, such that In.{e,}(n) is a primitive
recursive (hence total) function and

d(s, x, Aty { {e}ar(»)}(t,») = { {e; }ar(x))} ({e, s 3,)

for all e, s, x. Th.is-will casily imply the desired conclusion. Indeed, take ¢, to
correspond to /* . Then

S =1*710,x, Aty { {0H(ar ()} (¢,) = {{e, }(m) }(<0,0), %)

for all x; hence f is Kleene-recursive in gg,...,d;.

Using induction on the construction of ¢, we shall find a corresponding
index e, and prove in addition that whenever{ {e, } (ar(x))}({e.s),x) =1,
then o(s, x, Aty. { {e}(ar(y)) } <(t,) = u for all ¢.

1. Let ¢ =gg. Then

Fols,mx, Aty.{{e} (ar(y)} (t,)

= golm, ot .{{e}(ar(o*,x))} (25, &', X))

= {{0,4ar(x),0, {e}(3ar(x))) } (n, 25, x)

= {h,(ar(x), e)}(n,2s,x)

= {{6,4ar(x),0,1,h,(ar(x),€) > } (25,1, %)

= {hy(ar(x),e)} ({2, 2ar(x), 25 > }(n, x), n, x)

= {{4,2ar(x),{2,2ar(x), 25, hy(ar(x),e)) }(n,x)

= {hs(ar(x), e, s)}(n, x)

= {(9,8ar(x),2ar(x)) } (h3(ar(x),e,s),n,x,{e,5})

= {hy(ar(x)) }(hs(ar(x), e, s), {e,s), n, x)

= {hylar(x) (L hslar(x)} (Ce,s5,m,x), <&, 83,1, %)

= {(4,4ar(x), hs(ar (x)), ha(ar(x))) } ({e,s),n,x)

= {{e,} (ar(x))}(£e,5>, n, x)
with functions hy, h,, h; Kleene-recursive in go,...,¢;. primitive recursive
functions h,, hs and index e, chosen quite obviously, using the fact that all
partial recursive functions are Kleene-recursive in go,.... 4, (Kleene [1959]).
For instance,

hy=1s.(6,8s,0,1,¢6,850,(s)g + 2,{9, 85,25).

The above transformations increase the ordinal of computation. Supposing
{{e,}ar(x))}:({e,5),n,x) =u, one gets

{ (4) 4{11’(1’), h5(ar (x)]a h4(ar(x)}> }f(< e, S)s n, x] = U,
hence

{halar(x))} <o({hs(ar(x)} < (Ce,5D.n,x),{e,s),nX)=u

etc. Finally, g"("”]‘“l-{{e}(ar(ﬁl,x)J}<¢(25,a1,x)]=u gies Gty
Heplar()} <ot y) =u.
2. The functionals §,,L,, A, =(R;,R,L,), Id, M, Yo, i1, Y5, ¥o, ¥1, V>

Ch. 29] Higher recursion theory 231

and ¥'; are treated similarly; R, is replaced by 4, to eliminate the pairing
operation by 6.9.

It remains to show that the operations =, { »,[] of &, preserve the
property in question.

3. The case of multiplication. Assume that e,, e, correspond respectively
to ¢, ¥. There is a primitive recursive function h such that {{e,}(ar(x))}
({e,s),x)={{h(e)} (ar(x))} (s, x) and h increases the ordinal of computation,
ie. [{e;Har(x)), <{e,s),x|<|{hle)}ar(x)),s,x| whenever {{e,}(ar(x))}
({e, 8, x)]. Therefore,

@¥(s,x, Aty { {ej(ar(y) } (1,)
= (s, x, Arz. WP(r, z, Aty. {{ e} (ar(y)) } (. ¥)))
= @ls,x, Arz.{{e,} (ar(2)) (e, 7>, 2))
= s, x, Arz.{ { h(e)} (ar(2)) } (r,2))
={{ei}(ar(x)) }(<hle), s), x)
= {{es}(ar(x))}(<e,5),%)
for an appropriate e.

Suppose that {{e;}(ar(x))}((e, s>, x)=u Then {{e;}(ar(x))}<({hle), s>,
x) = u; hence

d(s, x, Arz. { { h(e) } (ar(z))} < o(r,2)) =
by the inductive assumption for ¢. It follows that

o, %, Arz.{{e} (ar(2)} <ol e 1), 2)) = 15

hence
P(s, x, Arz. W(r,z, Aty { { e} (ar(y))} <¢(t,) = u
by the induction assumption for ¥ and the monotonicity of ¢. Therefore,

(s, x, Aty. { {e} (ar(y) } <l V) =,
hence e, corresponding to ¢'F.
4. The case of translation. Assume that e, corresponds to ¢. Recalling

that there are primitive recursive functions hy, h, such that s=h,(s)(ha(s))
for all s, it follows that

@5, x, Aty {{e} (ar(y)} (2,)

= {§) (hy()(ha(9)). x, Aty. { {e}(ar(¥))} (&, »))
= ¢lhy(s), x, Aty. {{e} (@r(y))} (hy(9)(2),)

= hy(s), x. Aty. { {h3(e.9)} (ar(y)} (1.)

= {{es}(@r() }({ hale, s), ha(s)), X)

= {{e,}(ar(x)}(<e,5), %)

for a certain e, and a primitive recursive function h; which increase the
ordinal of computation. Proceeding as in the case ol multiplication, one
shows that e, corresponds to {¢).

232 Connection with other theories [Part F

5. The case of iteration. Assume that e, corresponds to ¢. In view of the
fact that = = [¢] satisfies the equality '

o(s/2, x), if s1is even,
(s — 1)/2,x), Aty .Z(t, y, @), if 5 is odd,

take primitive recursive functions h,, h, such that

{{h, (e, €) Har(x)) } (s, x) = { {ea} (ar(x)) } ({e, 5, x),
{{h,(e,) }(ar(x))} (s, x)
:{ {{(8)o}@r(x))} ((s)4/2,x), if (s), is even.
{{e,}(@r(x)) (< hyleq, (s)oh (), — 1)/2, %), if (s), is odd

for all e,,e,s,x and hy, h, increase the ordinal of computation. There is by
the (Second) Recursion Theorem for Kleene-recursiveness an index e, such
that {e,}(n) = {hy(ey) }(n) for all n.

Writing p, t for Asx. { {e}(ar(x))}(s, x), Asx.{{h,(e,, €) }{ar(x))} (s, x) respec-
tively, one gets

Z(s,x,)= {

, {{e}(ar(x)) }(s/2,x), ifsis even,
e {{ fe, }{m‘(x]}}({hl(e{z,i),(s —1)/2,%), ifsis odd
={{h,(e)) }(ar(x))} (e 5),x)
={{ez}(ar(x))}(<e, 5, x) = 1(s, x,)
for all s,x, ¢, hence (g, ¢7) = %, which implies £ < 7 by (££). However, the

last inequality says precisely that whenever X(s, x, Aty. { {e}(ar(¥)} (&, y)) = u,
then {{e,}(ar(x))}({e,s>, X)=u.

Conversely, a transfinite induction on £ shows that whenever { {¢,} (ar(x)) |
(e, s, x) =u, then (s, x, Aty.{{e} (ar(y))} <£(t, ¥)) = u. Suppose this is true
for all n < ¢ and {{e,}(ar(x))}:(<{e, s>, x)=u Then

{{hz(ez)}(ar(x))} (e, 50, %) = u
If s is even, then { {e}(ar(x))} < :(s/2, x) = u, hence

(s, x, Aty {{e}(ar(y)} < o(t, ¥)) = u.
Suppose that s is odd. Then

{{31}(di‘(x))}<§(<hl(e2, 3],%>,I) =u

s—1

qﬁ(T, x, Arz. {{h,(ey,)} (ar(z))} < «(r, z]) =u.

hence

Therefore

]
¢(5—2—,x, irz.{{es}(ar(2))} <(<e,r), 2)) = #,

which implies by the inductive hypothesis for ¢ and the monotonicity of ¢ that

-1
qf)(s—z— x, Arz.Z(r, z, Aty. { {e}(ar(n)} <(t, y))) =u

Ch. 29] Higher recursion theory 233

hence (s, x, Aty. { {e}{(ar ()} < £(t, ¥)) = u. Therefore, e, corresponds to . The
proof is complete.

Proposition 29.4 (Kleene-Recursiveness Theorem). Let f be a m-ary function.
Then f is Kleene-recursive in gg,...,g; il [is # ;0 {gy,...,d,}-recursive.
In particular, f is Kleene-recursive ifl f is " ,-recursive.

Follows by 29.2, 29.3.

The notions of relative #"-recursiveness and relative % | -recursiveness
can be introduced by duly modifying the original definition of Kleene.
Namely, consider the following alternative clauses which also originate in
Kleene [1959].

Oi_' Q(Q’)((0~ ar(x]!,]>a x) = gi‘(x)-
T*. Q)T ar(oed, 0 ™, x), 5, af, ed 1, x) = o/ (o).
8", Qp)((8,ar(x),, ey, e1),%) = ples, Anl. pley, o, x), x).

Let us call Kleene-recursiveness and Kleene ™ -recursiveness the notions
obtained by replacing clause 0 by clause 0, respectively clauses 0,7,8 by
clauses 07, 7%,8%,

Proposition 29.5. Let | be a m-ary function. Then [is Kleene ~-recursive in
dor..,g; iff it is 47, -recursive in gy, ..., 4.

Proposition 29.6. Let f be a m-ary function. Then J is Kleene " -recursive in
gos--.. gy T it is # | -recursive in gg, ..., g,

The proofs of 29.5, 29.6 closely follow that of 29.4,

The notion of Kleene-recursiveness can also be formulated via represen-
tability in hierarchies of 1OS. This is one of the earlier results of the 10S-
theory, analogous to a similar one of Platek [1966]. Such representability
does not however provide an adequate setting for recursion in higher types,
in which we agree with Feferman [1977].

EXERCISES TO CHAPTER 29
Exercise 29.1. Show that y, is recursive in /5 .

Exercise 29.2. Show that ‘P, is recursive in % ;.
Hint. ¥, =(0,,0,,D,<{¥F >C,(R¥5,[1,])), where C,,D, are the
clements of 6.35, 6.41.)

Exercise 29.3. Show that 3 is . ;-recursive.
Hint. §; =R, [(&29 D,{R,¥;>R,)].

Exercise 29.4. Show that f is #", U { f}-recursive.

Hint. If f is m-ary, f(z,o”*',...,0*?) and j,<j,<---<j, then
/= J][OISIIJM(I[EF-- s.ﬁvol}lﬁ;aol)' Ifj, = ju+. for some n, then ‘¥, is to
be used. Suppose for instance that m = {(m)y, 2D, i.e. k=2 and j, =j, =0.
Then f*"=y,(0,,1,)"(J(0,T0%,0,0,)¢7,0,).

234 Connection with other theories [Part F

Exercise 29.5. Show that [is recursive in {f* U],

Remark. It follows from 29.4 and exercises 29.1, 29.2, 29.4 and 29.5 that
relative 2 |-recursiveness implies relative Kleene-recursiveness, while the
latter implies relative "} -recursiveness.

Exercise 29.6. Show that V'] is not recursive in % ,.

Hint. Take w*=|),0" p=Ilw* t=1[(T*\w*) and prove that when-
ever ¢ is recursive in #',, then p¢ = p¢p. This equality fails for ¥ since
p¥;t#p¥; pt.

Exercise 29.7. Prove that all ¢ ,-recursive number functions are partial
recursive.

Hint. Assign to each peZ a ¢*:0——w such that ¢*(§,...57(so)) =
@(Sg,- -, 5,). Show that for every ¢ recursive in 4", there is a u-recursive
mapping I" such that if ¥ = ¢, then y* = I(p*).

Remark. A modification of 29.1 shows that conversely, all partial recursive
functions are # ,-recursive.

Exercise 29.8. Construct a function f such that f is not recursive in
(F*oar .

Hint. Adaptinga counterexample of Kleene [1963], take a partial recursive
function fy:e—— {0, 1} which has no general recursive extension. There is
(by 9.3) a binary primitive recursive function h such that fo(s)=0 iff
It(h(s, t) = 0). Take g(s,t,2%) =0, i h(s,1) >0, and g(s,¢,2°)T otherwise, then
take f = ise?.a2(At.g(s,t,0%)). By way of contradiction suppose that [is
recursivein { f*“}u .. Then fisrecursive in ¢, since both g and f are A -
recursive. Let ¢ = Asa'.1and 7 = W,] ¢. Then g is 4", -recursive, hence partial
recursive by exercise 29.7. Show that f, Uy is a general recursive extension of
fo, @ contradiction.

Exercise 29.9. Using the above counterexample, show that relative Kleene-
recursiveness is not transitive.

Hint. y is Kleene-recursive in J* which is Kleene-recursive, while y'is not
partial recursive, hence not Kleene-recursive.

Remark. Kleene-recursiveness also fails to support a First Recursion
Theorem. (Cf Platek [1966]. Kleene has recently revisited the subject,
assuming such a theorem in his new definition.) Proposition 29.4 and exercises
29.4, 29.8 show that these peculiarities are due to the privileged status of the
initial functions as compared with other functions Kleene-recursive in the
initial ones.

Exercise 29.10. Construct a ., -recursive number function which is not
partial recursive.
Hint. Consider the function y constructed in the hint to exercise 29.8.

Exercise 29.11. Let p(j(s),a’* !, x) = 1, if Yo/(/ (o) # 0), and p(s, x)T other-
wise. Show that p is 4"{ -recursive.

Ch. 29] Higher recursion theory 235

Hint. Take ¢ = Asx.1 and y = Y3 yo(0, I). Then jp =¥ (¢,])) for all j,
hence g =D, (W5 > C,(L1,14.). . .

Remark. Itfollows that the universal quantification halves’" ?E, ofall’**E
are " -recursive, where

1, if 3ad(e* (o) = 0),

i+2 i+1y
TR)”{1, if Vo (e T (o) £ 0).

CHAPTER 30

Inductive definability theory

Moschovakis [1977] proposes the program of developing Recursion Theory
within the framework of Inductive Definability Theory. His approach is well
illustrated by the handling of Higher Recursion Theory in Kechris and
Moschovakis [1977]. A similar conceptual approach is suggested by
Feferman [1977]. We believe the previous chapters of this book support the
view that Recursion Theory has its own independent foundations. Moreover,
the present chapter shows some notions and results of Inductive Definability
Theory to be particular instances of more general ones of Recursion Theory.
We begin with some introductory definitions from Moschovakis [1974].
Assume that an absiract structure ¥" = (M, R,,...,2,) is given, where M is
aset,m < M, &, is a n-ary relation, #, € M™, 1 <i <. The language P ofy
has individual variables x,y,z,...,relation constants 2,,...,4, and n-ary
relation variables S, T, U,... for all n > 1, We write %, S for tuples of individual
and relation variables; if S = S;,...,S,, then 18 will stand for 718y,..., 18-
Relation symbols # are relation constants and variables. The expressions
R(x,,...,x,) arc formulas and whenever ¢, are formulas, then so are p &,
@ v, 10, Iye and ¥ ye. We write explicitly (%,) to fix a list X, § which
contains all relation and free individual variables in ¢. Notice that £ is
a ‘lightface’ language since no individual constants are allowed, while its
‘boldface’ version in Moschovakis [1974] has constants for the members of M.
The notion of a relation symbol 2 positive in ¢ is introduced as follows.
A is positive in Z(x,,...,x,) and all formulas ¢ which have no occurrences
of &; if # is positive in ¢, Y, then it is positive in g &Y. ¢ v ¢, Iy and ¥ yo.
A formula @ is positive ifl it is free of negation. If ®(X,S) is positive, then
all the relation variables in S are obviously positive in ¢.
For all signatures (n.m,,...,m;) we have second order relations

P=PF,) M"x IM™ s x OMT

First order relations are those with k=0. A relation 2(%,S) is (positive)
elementary on ¥ ill there is a (positive) formula (%, S)eZ” such that P(%,S)
il (%, S) is true. Given a formula ¢(%, S,) of signature (n, m, ..., 1y, n) with §
positive in ¢, a second order relation fw{?c',_f) is constructed by taking

n<g

236

Ch. 30] Inductive definability theory 237

and #,=|).#5 A relation Z(X,5) is (positive) inductive on ¥ iff there
is a (positive) formula ¢(¥,%.5,8) and natural numbers s;,...,5y, such that
.@[}',-S')éuﬁ'w(sl,.‘.,sm,ft',_S'].

It should be stressed that second order relations positive inductive on ¥ are
monotonic in their relation arguments.

While the main goal of this chapter is to establish that inductiveness is a
particular instance of IOS-recursiveness, the following statement shows that
it is sufficient to deal with the notion of positive inductiveness.

Proposition 30.1. A second order relation Z(X, S) is elementary (inductive)
on ¥ iff there is a relation O(%,T,5,5") positive elementary (respectively,
positive inductive) on ¥ such that

P, 5)=0, 1Ry,..., 1R, 8, 18).

Proof. This follows from the evident fact that whenever o(%,5, U)e Z”
and U are positive in o, then there is a positive formula (¥, T, S, ', U) such
that (%, S, U) is true iff (X, 12;,..., 2,5, 15,0)is true.

Let us design now an [0S suitable for treating second order relations.

Example 30.1. The space &, is constructed as follows. Take the set & of all
relations X € w x | J,M" concentrated on M" for a certain n, where X
concenirates on M" iff

X (8, %00 0s Xond oV X g0 VX, X8, X g 50005 K)o
XS, Xpsrres K)o K (8. X 500000 %)
for all m < n <k, then take & =,
t(X)=min {n/X concentrates on M"},
X<Vt X ey,
M(X, ¥) = {25, %)/X(s, D)} 0 {25+ 1L,/ Y (s %)),
L(X) = {(s, X5, %)}, R(X) = {(s. T)/X(2s + L,F)}.

Get a (xx)-complete OS ¢ from the Z7-SCPS & =(#.ILL, R’)
by 19.9. Finally, &, =(#,1,,I1,L,,R,) is the isomorphic copy of &
obtained by transforming mappings ¢":# —% into relations {(5,%,Y)/
o(Y)(s, %)} _

We therefore have #, = {¢/¢d S x (| J,M") x # &¢ is monotonic and
normal}, where ¢ is normal iff there is an n such that whenever Y concentrates
on M™ m > n, then so does {(s,X)/®(s, X, Y)},

p<V¥iff =¥,
¥(s, X, Y)=> (s, X, 41y (1,7, Y)),
writing Aty. (¢, 7, Y) for {(t, ¥)/¥ V.)},
(¢, W)(s, X, Y)<>5 is even & ¢(s/2, X, Y) v 5 is odd & ¥((s — 1)/2,%,Y),
I1,(s, %, Y)& Y(s, %), Ly(s, %,)<= Y(25, %) and Ry(s, %, Y)= Y25+ 1,%).

238 Connection with other theories [Part F

The equality 2 ¢) = ¢n implies
{P(A(s), %, Y)=(s. X, ty. Y (1), V),

where 7i(s) stands for 2"(2s 4+ 1)— | as in example 22.5.
Iteration in higher order spaces is characterized as in 12.25; hence AsX.[¢]
(s,%,Y) is the least X in # satisfying the equivalence

X(s,X)<>sis even & Y(2)vs is odd&dJ(—l X X)

Consider the members ¥, ¥, W ,. ¥, P, of #, such that
¥ols, X, V)< Y(0,X%),
¥, (5,%, Y)< Y(25, X)& Y(2s + 1,%),
Y. (5%, Y)=Y(2s,%) v Y(2s + 1,X),
Wyls, X, Y)<=>3y Y (5,3, X),
W5, X, Y)=VyY(sy,X)

for all Xe M", n > ((Y) in the case of ¥, ¥y, ¥, respectively n + 1 > ¢(Y) in
the case of W,, ¥,. (In fact, the equivalences for ¥y, ¥y, ¥, hold for all X.)

For all ig,...,i,, m >0, consider the member ¥;, _;, of #, such that for
all Y the relation As¥.¥; _ ;.(sX,Y) concentrates on M",
n = max{ip,...,lm}, and

Wi inlassiaXis Y=Y (300X,)
Fix the set of initial elements
M={Pe, Ve, ¥, P P Yy i/ m>0&ig,. i€

One last definition completes our prchmmanes To each second order
relation (X, S) of signature (n, my,..., M) which is monotonic on S assign the
unique #*e# , such that for all Ythe relation AsX.2*(s, X, Y) concentrates on
M" and
P*(5,%, Y)=P(X, A, 7.0(0, 7, Y),... ¥.k—2(0,%,Y), 4 7. RO, Y. Y)

for all s, Y and XeM", writing Amy-_——for {yeM™/———1}. In parti-
cular, Z*(s, X, Y)<=2(x) for all first order relations #. Notice that

?*(él yany ¢k}(3$-?s Y)q::-.é?’{_f, ‘:"nnj’-' ¢1 (Os ?9 Y)! w By ;*m:? ‘#’k(oa?: Y)),
P(x, S)<=P*(S%,...,SF)s. X, Y)
for all 5, Y and XeM".

"’k |

Proposition 30.2. If #(X,S) is positive elementary on ¥, then #* is poly-
nomial in {&%,..., B} u.H,.

Proof. We follow the construction of the positive formula ¢ which defines
PP T

1. Let ¢(%,5) be Si(x;,...,x;,), where 1 <i<k, 1<i,...,i,<n Then
P* =W i— 1, . ifi<k and 2*=W,R{" 1,

Ch. 30] Inductive definability theory 239

2. Let ¢(x,8) be #(x;,....x;,) where 1<i<l, 1<iy,...,iy<n Then
?*A_—"PO W1 .g?*

3. Let#? (x S), 2,(%, S) be defined respectively by ¢, . If # is defined by
@&, then

P*(s, X, Y)=P1(s, X, Y)&P5(s, 3, Y)

for all 5, Y and XeM"; hence 2* = ¥ (2%, 2%). Similarly, if 2 is defined by
@ v ¥, Iyp or Vye, then 2* =WV (2%, P3), P* =V, P}, P* =V, P¥ respec-
tively. The proof is complete.

Proposition 30.3. 1f (%, S) is positive inductive on ¥, then 9* is recursive in
{BY,.... RF} UM,

Proof. There is a positive formula ¢(¥,X, S, S) and numbers s,,...,s,, such
that

Q’(}.s?)ﬁ'ﬁqa{sl)"'ssmsfsg)'

Let 2(¥,%, S, S) be the positive elementary on ¥ relation of signature (m + n,
my,....,m,m+ n) defined by @. Write (Z, Y)Y for

Zy A 2 O0F Y), 5, _"k 2(0,2, Y), A, 2. R0, 2, Y),
Z ranging over M™*", Then
T o6, 7.5, V) I (7.5, Y))= 2(5,%, Y)Y, A s nZ- I (7, Y)Y))
ST F Y) L -FLUOE)
< 2*0,....k—2,RE™ 1, 7957, 7,)
for all 5, Y and YyeM™, xeM". Both
IsZ.F%(5,Z, Y), 457.2*(0,....k—2,R1, #%)(5, 2, Y)
concentrate on M™*" for all ¥, hence

9% = 9%(0,... k—2,RE L, o%),
Suppose that © =2*(@0,....k—2,R%"1,0). The relation Asz.2*(@....,

k—2, R*"' ©)(s,Z, Y) concentrates on M™*" for all Y, hence so does
AsZ.0(s,Z, Y). It follows that
O, ¥, X, Y)< 2%0,....k —2,R, 71, 0)(5, 7, %, Y)
‘:’-'2 (}’ Y} ‘2m+rl 9{01?, Y})a

hence ©(s.7,%,Y)<0(0,7,X,Y) and IV, %, Y)")=0(7,%, Y), ie.
F3E 7.7, Y]::-G){s v,x,Y) for all s5,Y and yeM"™, XeM". Observing
that both AsZ..f%*(s,Z,Y) and /sz.0(s,Z,Y) concentrate on M™*"
we conclude that .#7% < ©. Therefore,
.ﬁ*=p®..€2*(ﬁ,,‘,,k—Z‘R"",@),

hence £} is recursive in {#%,.... 4} u.#, by 6.11 since so is 2* by 30.2.

240 Connection with other theories [Part F

The proof of 22.3 implies A(R,,L,)(s, X, Y)<Y(s+ 1,X). Multiplying
¥,,A(R,,L,) and ¥, . for appropriate u,i,,...,i,, one gets a ¢
such that 1sX.¢(s, X, Y) concentrates on M" and

¢[Saxi_s"'!xn9 Y}“*‘Y(S!Slﬁ"'!sma x11---5x||:|)

for all Y. Therefore, 2* = ¢.#%; hence 2* is recursive in {#%,....Rf o .H ,,
which completes the proof.

The structure ¥ is said to be w-acceptable iff the subset w of M admits
a coding scheme € = (w, <, ¢) such that the relations w, <, Seq, (h, g and

their negations are positive elementary on ¥”, where < is the ordinary total
ordering of w, ¢):| J,0" = is injective,
Seq(x)<>Indx; ... Ix,(Xx = (Xyyee s Xy)
lh(x,y)=yewdx = {x},..-, %,),
q(x,y,z2)=>yew & x = (X, X,) &Z = X,
By an argument of Moschovakis [1974], this ensures that all the arithmetical
relations over w are positive elementary on #". In particular, this is the case
for the following recursive ones:
Fi(x,y)=xen&ky=2x,
F,(x,y)xen&y=2x+1,
Fi(x,y,2)=3udo(x+1=2"2v+ N&z +1=2"2y + 1)).

Proposition 30.4. Let 7~ be w-acceptable and ¢ be primitivein {#7,...,2} } v
. Then for all n the relation 2, of signature (n+ 1,n+ 1) is positive
elementary on ¥, where

ga@u(i.r S}“ﬁ’(b(i., S-)s
S standing for the unique X # to concentrate on M” such that X nw x M" =
Snw x M"
Proof. By induction on the construction of ¢.
1. Let ¢ =L,. Then
gbqs,n(ssxl:' ”:xnss]ﬁi‘l(ssxls' '-sxms,]ﬁg(zs,xl)“ﬂxn)
¢=’S(23,x1, i ,x")-wElx[Fl(s,x)&S(x,xl, ol xn});

hence 2, is positive elementary on 7.
2. Let ¢ =¥, Taking a k > n;,n, one gets

ggﬁﬂ(ss Xppeees Xy, S)%‘@?(saxl peees Xps s‘)#vxni- 1= ka'@i(xls P ’xm);
hence Z, is positive elementary on ¥".
3. Let ¢ =¥;. Then 2, (s,S)<+S(s) and

Py (8% 150 % SYySW5(5,X 5., X, §) 388, 3, X, ..., X,)

<=>3yS(8, yu Xqsee0y Xy —y) for n>0.
4. The cases R;, ¥y, ¥, ¥, ,¥,, "V, .i,, are treated similarly.
5. Let 2,,, Py, be positive elementary on ¥ for all n. Take a k > n such

Ch. 30] Inductive definability theory 241

that whenever Y concentrates on M* then so do At¥.¥(,V,Y) and
AsX.p(s, X, Y); hence ity . W(L, ¥, Y) = (44 1Y .W(, ¥, Y))~ . It follows that
"?‘{pq‘_n(‘ga x‘l" ces Xy S)‘::.d)‘}}(s: x]s e ;xn,g)
¢¢(S!x13' --1xmj*tj).'lp(ia._"’:: §]]
@é(syxb) -:xm(;'k+ l[j}‘lp('l"s?:g])h]
S P8, X 12wy Xy (D11 1Y Py flt, ¥, 8 x MFT)))
@VX,,.;. i 'kaqb(su xle e 1xks (’?‘k+ ltj).'?‘l‘.k(t!j;s S X Mk_n]]ﬁ]
SV -vxkga_k{ssxl: . lf}..g\y‘k[t, ¥, S Mk_")],
hence 2, is positive elementary on ¥".
6. Let 2,,, 2y , be positive elementary on ¥". Then
Py ann($X 1503 X,)
ﬁ(‘ﬁ- ‘P)[S,xl,...,x,,,g}
‘J‘:""Elx(Fl[xss)&qb{X:xl’-":xms) ¥ FZ(X>S)&LIJ(JC:XI)“')xnag))
>Ax(F (&P (X, X153 X 8) V Fo(X,) &Py (X, X 1, Xy S)),
hence Z,,,, 1s positive elementary on ¥".
7. Let 2, be positive elementary on ¥, Then
Py al8i %1515 %y S)
S{PY(6x 15000 %y 5)
<> uTo(F (s, u, &P, Xy, ..., X, ALV . F4(s5.1,0) &80, 7))
< JuIo(F (5,1,)& Pty X 150y Xy (A s 11T . F3(5,5,0) &S (0, 7)))
<> JuIv(F3(s,)& P, (1, X1, ..., Xps Ay i 11V - F3(5,1,0) & 8(0, 7)),

hence P4y 18 positive elementary on ¥". The proof i1s complete.

Proposition 30.5. Let ¥ be w-acceptable and ¢ recursive in {Rf,....2}}u
M. Then 2, is positive inductive on ¥~ for all a.

Proof. The Normal form Theorem 9.3 gives ¢ = I['¥] with a certain ¥
primitive in {#%,....2f}u.#,. It suffices to show that 2, is positive
inductive on ¥ for all n not less than the type of W. Indeed, the type of ¢ is not
greater than such n; hence

é"&m(s,xl,,_.,xm,S)«tb‘v’xm_l ...Vxn.@w(s,x] SR A o L |
for all m <n.

Take £=[¥]. If Y concentrates on M", then so do is¥.¥(s,%,Y),
MY .Z(t, Y, Y)since the types of W, X are not greater than n. Using the equality
T =(I,¥Z) and the fact that 2, , is positive elementary on ¥~ by 30.4, one
gets

'@E,n(ssxls-“!xms} #E{Saxlr" . ,X".,g}
< Ix(F,(x,8)&8(x, % ,.... X,) ¥ Fa(x,5)
&Lp(x!xls' . ,,xﬂ,it}'.z{t,}?,g}))

242 Connection with other theories [Part F

< 3x(F (%, 8)&S(x,X1,...,%,) V Fa(x,5)
&YX, X500y Xy (A 4117 - Py (1,7, 5))™))

<> Ix(F (%, 8)&S(x, X 5...,X,) V Fi(x,5)
&galil.n(x!xn"'9xn9':"n+1t}u'gbz.n(‘s?’s)))

(8, X 150000 Xy 8y Ay 1LV . Ps (L, Y, S))

with a certain relation 2 positive elementary on ¥,

Suppose that

(IJ ‘?(S: Xiseens Xy S)@Q(S, XisrvesXp, S: Au+ 11‘}‘"@‘(‘: ?: S))' l
Take the unique ¢,,¢,c%, such that for all Y the relations
AsX.0,(s, X, Y), AsX.¢,(s, %, Y) concentrate on M" and

B 1(8X 15000y X Y)Y (8,X1,0000X,),

D5, X150, %0 V)22 P(5, X 15000, % YOO 0 X M),
Then ¢, = (¢, ¥¢,), hence £, < P, by (££), which implies Py (s,x,....,
Xy 8)=> P(8,X 150005 %, S) for all s,xy,...,%,, 8. Therefore, Z;, is the least

relation satisfying (1); hence it is positive inductive on ¥". Finally, Z,, is
positive inductive on ¥” since

?‘f;‘u(s!x‘ls"-sxmS)wayaZ(Fi(s'iy)&FZ(ysz)&gE.ﬂ(zdx1:-'-1xms})'

The proof is complete.
The following Positive Inductiveness Theorem establishes the desired
characterization of positive inductiveness.

Proposition 30.6. Let ¥~ be w-acceptable. Then a second order relation
#(x,S) is positive inductive on ¥ iff 2* is recursive in {#},..., B} VM.

Proof. The ‘only if’-part of the equivalence follows by 30.3.

Assume that 2 is of signature (n.m,,...,m,), monotonic in its relation
arguments, and 2* is recursive in {#%,...,2f}u.#,;. Fix a number
W >n,my,...,m,. Then

Py s Xy S poe -2 5p)
PO, X100y X ALY (ST, SENET, 0))
< PH0, Xy, s Ko (A 167 (8. SHE T, 0)))
VX100V, P (0, X150y Xy Ao 416V (ST, SE) (1,1, 0))
N X Lo V20 P (0, X v Ky Ao 1 BT G Vi S g5 ey Sp) s

where

9(1$J’1,---,J~'masu---s3x)
It + 1= 2y + &S (P1ae s V) v - V1 +1=26"32p + 1)
&Sy ((Viseees V) VEFT=2T 0+ DES (Y1, s Yim)-

Therefore, 2 is positive inductive on ¥~ since 2,.,, is by 30.5 and positive
inductiveness is preserved by substitutions and negation-free explicit defi-
nitions. The proof is complete.

Ch. 30] Inductive definability theory 243

Proposition 30.6 makes it possible to transfer results of the general IOS-
theory to the theory of inductive relations: for example the Enumeration
Theorem 9.18 and the First Recursion Theorem 9.13* for .%,. The latter is
a nontrivial generalization of the Positive Induction Completeness Theorem
6B.4 of Moschovakis [1974] (cf. the first Recursion Theorem in example 28.2).

The space %, is equally suitable for treating more general notions of
inductiveness introduced e.g. by adding a monotonic quantifier Q to the
language #”. One just adds corresponding elements ¥y, ¥y to 4.

It is worth mentioning finally that the abstract structures ¥ considered
in this chapter are not necessarily acceptable in the sense of Moschovakis
[1974], though acceptability implies w-acceptability and helps to simplify
some formulations and proofs.

EXERCISES TO CHAPTER 30

Exercise 30.1. Show that the elements ¥ ,¥, of example 30.1 satisfy
respectively conditions (1) of exercises 7.10, 7.14.

Example 30.2. Takeaset M,» < M, fix an injective function J: M?*— M, then
take F={X/XcM}, X<Y iff X<V, X, Y)=J0,X)uJ(Y)
L(X)={y/X(<0,y)} and R'(X) = {y/X({1,¥))}, writing {x,y) for J(x,y).
Construct a (xx)y-complete OS &’ from the SCPS & = (#,IL, L, R') by 19.9.
Finally, &, is the isomorphic copy of &’ obtained by transforming mappings
@:F—>F into second order relations {(x,Y)/¢(Y)(x)}. Therefore,
F,={b/¢ =M x F &¢ is monotonic},

P (x, Y)ed(x.Ay. ¥ (3, Y)),

(¢, P)(x, Y)e=Tp(x =0,y > &y, Y) v x = {1,y > &¥(y. Y)),
1,(x, Y)<> Y(x), L, (x, Y)<> Y(<0,x) and R,(x,Y)<Y({ 1,x)).

Exercise 30.2. Let &, be the 10S of example 30.2 and let be St:.%, - .7
such that
St(@)(x, Y)=Iyz(x = (.2 > &plz, Au. Y ({y,u3)))-

Show that St is a t—u;_:'_cration satisfying the axiom tpA,.
Hint. Take .% = M , where X(y, Y)<=Y({x,y>)
Kolx, Y)<e3yz(x = {3, {0,z &Y ({0.{y,2))
vx=Ly Lz &Y({1,{yz}))
K\ (x, Y)eIdyzulx = (p.{z,up & Y(Ly, 27, u)),
K,(x, Y)<=3yzu(x = Ky, z . uy & Y (. {z.u)).
Use 10.18, 18.21.

Exercise 30.3. Show that the above operation St satisfies the assumptions of
exercise 10.9 for appropriate Ky — K,6%, expressible by L,,R,,K§ — K3,

244

Connection with other theories [Part F

multiplication, I1; and St, where

K3(x, Y)=Y({x,x)),
Ki(x, Y)=3yz(x = {p.z2)& Y({z,y})),
2, Y)e>3dyz(x = (y,z> & Y(2))
Hint. Cf. example 24.1.

Since K, — K, are also expressible by K§ — K¥, let us extend the notion of
st-recursiveness so that ¢ is st-recursive in &, € # | iff

¢ecs({L1sR1\Kg_Kg}ugi/osHls(>s[],St).

st-Recursiveness provides a simpler characterization of the inductive relations
over acceptable structures, where ¥ is acceptable iff it admits a coding scheme
F=(w <,{ D)< }:U,,M"—»M, with relations w, <, Seq, lh, ¢ and their
negations positive elementary on ¥,

Take 4, ={¥,¥,.¥,,¥:¥,}, where

Yix, Y)erAyz(x = (2> ¥& Y({y + 1,2)),
We=L,nR,, ¥ ,=L,UR,,
Wilx, Y)=3yY((p,x3), Pulx, Y)=VyY((px)).
To each relation # of signature (n,m,,...,m,) assign a #~ = M x % such that
F 6 Y) e Axg 0 Xy = CXpprers (o 15X d o D EEP (X5 X S1a s e s Sp))

where Siz,,....2,,) = Y({i,{21.....{Zp, = 1+ &, > -++). In particular, if k=0,
then

gﬂ“'(x’ Y)'q*'axl"‘xn(x= <x13---:(xn—l’xu>'">&?(xl?'“:xn))'

Exercise 30.4. Let 7" =(M, #,....,%,) be acceptable. Fix a coding scheme ¥
positive elementary on ¥, then take the space &, of example 30.2 based on
M and J=Jxy.{x,y>. Show that a second order relation & is positive
inductive on ¥ iff 2" is st-recursive in {#],...,%} v-#;. In particular,
P<Mx2M is positive inductive on ¥ iff it is st-recursive in
{RL,.... ¢ }uy.

Remark. To incorporate the original ‘boldface’ inductiveness of
Moschovakis [1974] one should therefore substitute & v .#, for .#, and
turn to the ‘boldface’ version of 10S-theory referred to in the remarks to
exercise 10.9.

PART G

Epilogue

Following Kreisel [1971], the main purposes of axiomatizing (fragments of)
Recursion Theory are: (i) To help advance and better understand other parts of
logic and mathematics, especially Ordinary Recursion Theory and its specific
generalizations known as Generalized Recursion Theory, as well as Theoreti-
cal Computer Science; (i) To analyse the concept of effective computability;
(iii) Ultimately, to provide both independent foundations and genuine
axiomatic development of Recursion Theory.

Axiomatic approaches to Recursion Theory have been suggested or studied
by Wagner [1969], Strong [1968], Friedman [1971a], Moschovakis [1971 T
Moldestad [1977], Fenstad [1980], Skordev [1980], Ivanov [1980], Fitting
[1981], Zashev [1983] and others. Especially elaborate and deep is the
exploration of the so called computation theories in Fenstad’s book. Our
discussion will concentrate on the present approach and those of Skordev and
Zashev which form a separate trend, Algebraic Recursion Theory (ART for
short).

Although it would be overoptimistic to expect early contributions of ART
to other parts of logic and mathematics, some encouraging examples can be
pointed out.

Let Z be a class of elements together with a notion of effective computa-
bility, the subclass % consisting of all the computable elements. Informally
speaking, if there exist elements %, and finitely many operations %’ simple
enough to be assumed initial and satisfying

(M U = cl(Bo/B),

then the notion of effective computability concerned is structurizable. For
instance, the notion of y-recursiveness is structurized by Kleene's definition
adduced in chapter 2. (To be more precise, by its modification for unary
functions given in the same chapter.) As an application of ART one obtains
from 24.3 or by the corresponding result of Skordev [1980] that Moschovakis’
prime computability is structurizable, a by no means obvious fact. Normal
forms for prime and search computable functions are also obtained.

Theorem 29.4 however does not imply that the Kleene-recursiveness in
higher types is structurizable which would indeed be surprising if true. One
can easily get (1) by taking in %, the universal function o from chapter 29 but
this would not yield a structurization since ¢ is not at all simple.

245

246 Epilogue [Part G

In another application of ART, the First Recursion Theorems of Mos-
chovakis for functionals and second order relations are improved in chapters
28 and 30, respectively.

Results established in chapters 23 and 26 suggest that the mathematical
foundations of Computer Science provide another perspective field for
conceptual and practical applications. ART is closely related to such topics as
semantics of programming languages, structured and functional program-
ming, proving program correctness etc.

There is little doubt that algebraization brings new coherence and insight to
Recursion Theory. In chapter 9 we obtained new proofs of basic classical
theorems, establishing a direct connection between results of Ordinary and
Generalized Recursion Theories which turn out to be not mere analogues but
particular instances of more general results of ART. The new concepts of ART
also help to better understand classical ones. For example, the algebraic
treatment of the transition property and the least fixed point operator
respectively as translation and iteration in consecutive spaces is new both in
Ordinary and Generalized Recursion Theories. The storing operation throws
more light on the nature of certain technicalities of Generalized Recursion
Theory, Inductive Definability Theory and Computer Science, contributing
also to the ‘lightface—boldface’ division in the general theory itself. Splitting
has also fully established its importance.

And now, ART and effective computability; we have referred to our starting
point in chapter 2, presumably with a deeper knowledge. The motivation
adduced in chapters 2, 12, 13 and the practical work carried out in parts E, F
lead to the thesis that all natural concepts of effective computability can be
formulated within suitable IOS, at worst having to use consecutive spaces.
Therefore, the comparison with abstract 10S-notions of effective computa-
bility such as recursiveness, t-recursiveness and %#’'-recursiveness provides an
objective criterion for judging the naturalness of a proposed notion of effective
computability and aids the choice between several such notions.

To make practical use of the above thesis one should be able to identify
those mathematical notions which are notions of effective computability.
(They need not be necessarily so called.) This can be done either by their
intuitive content or by their effectivity properties such as transition, recursion
and enumeration.

While Church’s thesis and its various extensions identify the widest
intuitively acceptable notion of effective computability in a given context, it
could be claimed that narrower notions are in a sense more basic. For one can
describe relative partial recursiveness in terms of relative p-recursiveness but
not vice versa; prime computability similarly embraces the wider notions of
Friedman’s computability and search computability. This underlines once
again the fundamentality of the initial elements and operations of IOS which
seem to form a minimal collection.

In addition to structurization, a principal problem of effective computa-
bility partly solved so far is the characterization of all those collections of
operations 4’ and elements &, which generate reasonable notions of effective
computability % = cl(#,/#'). Such a notion should in particular satisfy the

Part G] Epilogue 247

recursion property, which means that all unary mappings constructed by
composing operations from %’ and using constants from %, have fixed points
in % which are least with respect to a certain partial order. A related question.
When does a given notion % have structurizable extension’s which satisfy the
recursion property? It would be interesting in connection with these problems
to characterize alternatively the operations over an arbitrary IOS which are
(equivalent to) t-operations.

Broadly speaking, it is to be hoped that ART will help one analyse effective
computability as Group Theory helps to analyse symmetry.

We complete our discussion by outlining some possible directions for
further work.

The first such direction deals with recursion theory on structures more
general than I0S; developments of this kind were initiated by Zashev’s
dissertation devoted to general recursion theory on combinatory incomplete
applicative systems. These are partially ordered sets with several constants
called combinators, multiplication and either union or pairing operation
satisfying certain weaker associative and distributive laws. Among the systems
in question is a generalized OS, partially ordered set # with monotonic
operations o, I1 and constants I, L, R, A, — A, D, — D, such that ¢l = ¢,
(P = oW(xA41), @eWx)=(eWA)NxAs)., ¥ =(pA)WAs), (@)=

D (@(xDy), ¥(xD3)), (@1 ¥x)= (@, ¥)D4)xAs)s Liw,)= @ and R(p,y)=y.
All the OS satisfy the'ae axioms with 4, =.-- =D, =1 To get an example
which is not an OS take an infinite set M such that M? = M, then take
F ={o/o =M} and @ = {s/3tep((s,)ey)}. A further introduction to the
subject can be found in Zashev [1983-1987].

In another development Skordev combinatory spaces are modified in
Petrov and Skordev [1979] by considering categories instead of semigroups;
the same can be done with IOS. So far, however, such generalizations have
been less successful.

On the other hand, one may find even 108 too general a system and try to
distinguish classes of models by means of additional axioms. For instance,
‘multiple-valued’ spaces are distinguished by a constant U such that L, R < U.
(The element U itself need not necessarily be ‘multiple-valued’; in the space of
exercise 19.4 it is a single-valued function.) The availability of a second counter
is expressed by making use of the constants W, W,, W, in chapter 21.

A more ambitious task would be to axiomatize (parts of) particular
recursion theories, turning to their more delicate and specific problems
hitherto untouched by ART. Since consecutive spaces will be needed in some
cases, the following remark is in order. The exposition of chapters 12—14 is not
properly axiomatic but can be made so by introducing the notion of higher
108 which is an 10S &' = (&', I', [T, L', R') with constants Id, Mle#' such
that I''=1I', L*=L, R*=R, ld¢'=1d, Mi=MIL, R), MII'Id)="T,
MI((L, LR'), R), {(¢'>=RLMIL, LId), MI(R', R'Id))]¢"),
MI((L, L'R), R?), (o) =(R[(MI(L, L1d), MI(R', R'Id))]¢’)’,
[¢'1=(R'[(Id, M])]e")" and VB'{@'H’Mgzp’H’M‘)::»@’ <y, ¢'" standing for
Ml(@'Id, I'). If &, %" are consecutive [0S, then % is a higher TOS and its
subspace %' based on {¢'/¢p'e#’} is just the isomorphic copy & of #.

248 Epilogue [Part G

Conversely, let %" be a higher IOS. Assign to cach ¢’ e.# ' amapping '~ = A",
(p'0')"and take the isomorphic copy %'~ of & based on {@'/p'eF'}. Then
5" §°'Y are consecutive 108S.

The theory of consecutive spaces %, %' of which the former is a pairing
space and the latter an IOS (as in example 28.1) is similarly axiomatized by
merely adding to the 10S-axioms the last axiom listed above with O
substituted for Id.

Another important direction for further work is the development of an
axiomatic degree theory on IOS. (We regard it as a fascinating challenge of its
own rather than a necessary part of the justification of the present approach.)

One way to introduce degrees in [OS is as follows. Consider the adjunction
operation v :F*— F satisfying the ‘light face’ axioms Ovo=¢p v O =0,
@v)vi=ev@vy. LvR=L alevi)=apvay, (V=
o v e and (L v R)a,) = o v if for o= L, R, assuming also {I)>=1
and ¢@=@RL=¢=0. One takes ¢ vy =sup{o ¢ [(M\Dome)} in
example 4.7 and similarly in other spaces; compare with Moschovakis [1977].

Writing @ for oL v R, let ¢ <ge¥ iff ¢ is recursive in Y™, @ <p¢ iff
0" <get, 0 =gy iff ¢ <Y & U<,

D={acFja#D & Voyealp =)},

a <peb iff Apeadreb(p <getb), and a < b iff Jpeadyeb(p <gif). (Recursive-
ness could be replaced by other abstract notions of effective computability, e.g.
t-recursiveness and %'-recursiveness.) Now it can be shown that for every
degree a in D there is a degree a/, the jump of a, such that a < a' <,pa and
whenever b <gra, then b <da'. The proposed object of study is the upper
semilattice (D, <) with or without the jump operator. It is certain however that
in order to establish abstract analogues of the basic Degree Theory results one
will need to assume further axioms and, perhaps, invent new techniques. This
also seems to be an occasion for the concept of ‘finite’, much advocated by
Kreisel, to duly enter.

Apart from Degree Theory, the adjunction operation can be employed in
building up abstract analogues of the arithmetical hierarchy of Ordinary
Recursion Theory; cf. Tvanov [1985] for some details on these hierarchies and
degrees and their relationship.

An obvicus question suggested by the abovementioned analogy between
10S and groups is whether the former support an interesting theory of a
classically algebraic kind beyond the Semigroup Theory. And, if the answer is
positive, then what is the benefit for Recursion Theory?

To summarize, while the present state of ART shows convincingly the
feasibility of some algebraization of Recursion Theory, it will fall to future
works both in the pure and applied theory to supply a more definite idea of
how far can all this actually go.

References

Apt, K.R.(1981) Ten years of Hoare’s logic, a survey, ACM Transl. Progr. Lang. Syst., 3,
431-483.

Backus, J. (1978) Can programming be liberated from the von Neumann style? A
functional style and its algebra of programs, Comm. ACM, 21, 613—-641.

Barwise, J. (ed.) (1977) Handbook of Mathematical Logic, Amsterdam.

Bohm, C., Jacopini, G. (1966) Flow diagrams, Turing machines and languages with
only two formation rules, Comm. ACM, 9, 366-371.

Cutland, N. (1980) Computability, an Introduction to Recursive Function Theory,
Cambridge.

de Bakker, J.W. (1971) Recursive procedures, Math. Centre Tracts, No. 24.

de Bakker, J.W., Scott, D. (1969) A theory of programs, IBM Seminar, Vienna.

Ershov, Yu.L. (1977) Theory of Numberings, Moscow (in Russian).

Feferman, S. (1977) Inductive schemata and recursively continuous functionals, in:
Logic Colloguium 76 (eds. R.O. Gandy, J.M.E. Hyland), Amsterdam, pp. 373-392.

Fenstad, J.E. (1980) General Recursion Theory, an Axiomatic Approach, Berlin.

Fitting, M. (1981) Fundamentals of Generalized Recursion Theory, Amsterdam.

Friedman, H. (1971) Algorithmic procedures, generalized Turing algorithms, and
elementary recursion theories, in: Logic Colloguium '69 (eds. R.O. Gandy, C.EM.
Yates), Amsterdam, pp. 361-389.

Friedman, H. (1971a) Axiomatic recursive function theory, in: Logic Colloguium '69
(eds. R.O. Gandy, C.E.M. Yates), Amsterdam, pp. 113-137,

Georgieva, N.V. (1980) Normal form theorems for some recursive elements and
mappings, Compt. Rend. Acad. Bulg. Sci., 33, 1577—-1580 (in Russian).

Germano, G., Maggiolo-Schettini, A. (1976) Recursivity, sequence recursivity, stack
recursivity and semantics of programs, in: Lect. Notes in Comp. Sci., No. 45, pp. 52—
64.

Greibach, S.A. (1975) Theory of program structures: schemes, semantics, verification,
Lect. Notes in Comp. Sci., No. 36.

Hoare, C.A.R.(1969) An axiomatic basis for computer programming. Comm. ACM, 12,
576-580.

Ivanov, L.L. (1980) Iterative operative spaces, Dissertation, Sofia University (in
Bulgarian).

Ivanov, L.L. (1980a) Iterative operative spaces, Compt. Rend. Acad. Bulg. Sci., 33, 735-
738 (in Russian).

Ivanov, L.L. (1980b) Some examples of iterative operative spaces, Compt. Rend. Acad.
Bulg. Sci., 33, 877-879 (in Russian).

Tvanov. L.L. (1983) Iterative operative spaces and the system of Scott and de Bakker,
Serdica Bulg. Math. Publ., 9, 275-288.

Ivanov, L.L.(1984) Kleene-recursiveness and iterative operative spaces, in: Proceedings
of the 1980 Conference on Mathematical Logic held at Sofia (eds. D.G. Skordev et al.),
Sofia, pp. 47-62.

Tvanov, L.L. (1984z) First order axioms for the foundations of Recursion Theory in:

249

250 References

Extended Abstracts of Short Talks of the 1982 Summer Institute on Recursion Theory
(ed. I. Kalantari), Recursive Function Theory Newsletter, 5560

Ivanov, L.L. (1985) Abstract hierarchies and degrees, Oslo University, Institute of
Mathematics (June 1985), Preprint No. 5.

Ivanov, L.L. (1987) Distributive spaces, in: Mathematical Logic and Applications:
Proceedings of the 1986 Summer School and Conference held at Druzhba (ed. D.G.
Skordev), London (to appear).

Kechris, A.S., Moschovakis, Y.N. (1977) Recursion in higher types, in: Handbook of
Mathematical Logic (ed. J. Barwise), Amsterdam, pp. 681-737.

Kleene, S.C. (1952) Introduction to Metamathematics, Amsterdam.

Kleene, 8.C. (1955) Hierarchies of number-theoretic predicates, Bull. Amer. Math. Soc.,
61, 193-213.

Kleene, §.C. (1959) Recursive functionals and quantifiers of finite types I, Trans. Amer.
Math. Soc., 91, 1-52.

Kleene, S.C. (1963) Recursive functionals and quantifiers of finite types 11, Trans. Amer,
Math. Soc., 108, 106-142,

Kleene, S.C. (1978) Recursive functionals and quantifiers of finite types revisited I, in:
Generalized Recursion Theory II (eds. J.E. Fenstad, R.O. Gandy, G.E. Sacks),
Amsterdam, pp. 185-222.

Kleene, S.C. (1981) The theory of recursive functions, approaching its centennial, Bull.
Amer. Math. Soc. 5, 43-61.

Kolaitis, Ph.G. (1978) On recursion in E and semi-Spector classes, in: Lect. Notes in
Math., No. 689, pp. 209-243,

Kreisel, G. (1971) Some reasons for generalizing Recursion Theory, in: Logic
Collogquium 69 (eds. R.O. Gandy, C.E.M. Yates), Amsterdam, pp. 139-198.

Maltsev, AL. (1961) Constructive algebra I, Usp. Mat. Nauk, 16, 3, 3-60 (in Russian).

Maltsev, A.L (1965) Algorithms and Recursive Functions, Moscow (in Russian).

Manna, Z. (1974) Mathematical Theory of Computation, New York.

Mazurkievicz, A. (1971) Proving algorithms by tail functions, Inform. and Control, 18,
220-226.

McCarthy, J. (1963) A basis for a mathematical theory of computation, in: Computer
Programming and Formal Systems (eds. P. Braffort, D. Hirschberg), Amsterdam,
pp- 33-70.

Moldestad, J. (1977) Computations in higher types, Lect. Notes in Math., No. 574.

Moldestad, JI., Stoltenberg-Hansen V., Tucker, J.V. (1981) Finite algorithmic proce-
dures and computation theories, Math. Scand., 46, 77-94.

Moschovakis, Y.N. (1969) Abstract first order computability, Trans. Amer. Math. Soc.,
138, 427-504.

Moschovakis, Y.N. (1971) Axioms for computation theories—first draft, in: Logic
Colloguium '69 (eds. R.O. Gandy, C.E.M. Yates), Amsterdam, pp. 199-255,

Moschovakis, Y.N. (1974) Elementary Induction on Abstract Structures, Amsterdam.

Moschovakis, Y.N. (1977) On the basic notions in the theory of induction, in: Legic,
Foundations of Mathematics and Computability Theory (eds. R.E. Butts, J. Hintikka),
Dordrecht, pp. 207-236.

Moschovakis, Y.N. (1984) Abstract recursion as a foundation for the theory of
algorithms, in: Lect. Notes in Math., No. 1104, pp. 289-364.

Myhill, J. (1961) Note on degrees of partial functions, Proc. Amer. Math. Soc., 12, 519-
521.

Normann, D. (1980) Recursion on the countable functionals, Lect. Notes in Math., No.
811,

Petrov, V.P,, Skordev, D.G. (1979) Combinatory structures, Serdica Bulg. Math. Publ.,
5, 128—148 (in Russian).

Platek, R.A. (1966) Foundations of recursion theory, Dissertation, Stanford University.

Rice, H.G. (1953) Classes of recursively enumerable sets and their decision problems,
Trans. Amer. Math. Soc., 74, 358-366.

Rogers, H., Ir. (1967, Theory of Recursive Functions and Effective Computability, New
York.

References 251

Scott, D, (1971) The lattice of low diagrams, in: Lect. Notes in Math., No. 188, pp. 311—
366.

Shepherdson, J.C. (1975) Computation over abstract structures, in: Logic Colloquium
‘73 (eds. H.E. Rose, J.C. Shepherdson), Amsterdam, pp. 445-513.

Shoenfield, J.R. (1967) Mathematical Logic, Reading, Massachusetts.

Skordev, D.G. (1963) Computable and y-recursive operators, /zv. Mar. Inst. BAN, 7, 5~
43 (in Bulgarian. Russian summary).

Skordev, D.G. (1976) Recursion theory on iterative combinatory spaces, Buil. Acad.
Polon. Sci., 24, 23-31.

Skordev, D.G. (1979) The First Recursion Theorem for iterative combinatory spaces,
Z. Math. Logik Grundl. Math., 25, 69-77.

Skordev, D.G. (1980) Combinatory Spaces and Recursiveness in them, Sofia (in Russian,
English summary).

Skordev, D.G. (1980a) Semicombinatory spaces, Compt. Rend. Acad. Bulg. Sci., 33,
739-742 (in Russian).

Skordev, D.G. (1982) An algebraic treatment of flow diagrams and its application to
Generalized Recursion Theory, Banach Center Publ., No. 9, pp. 277-287.

Skordev, D.G. (1982a) Applications of abstract recursion theory for studying the
capability of functional programming systems, in: Mathematical Theory and Practice
of Softwear Systems (ed. A.P. Ershov) Novosibirsk, pp. 7-16 (in Russian).

Skordev, D.G. (1983) A reduction of polyadic recursive programs to monadic ones, in:
Symposium on Mathematical Foundations of Computer Science, Seminarbericht 52,
Humboldt University Berlin, pp. 124-132.

Skordev, D.G. (1984) First Recursion Theorem for iterative semicombinatory spaces,
in: Proceedings of the 1980 Conference on Mathematical Logic held at Sofia (eds. D.G.
Skordev et al.), Sofia, pp. 89-111 (in Russian).

Soare, R.I. (1986) Recursively Enumerable Sets and Degrees: The Study of Computable
Functions and Computably Generated Sets, Berlin.

Soskov, LN. (1983) Computability in algebraic systems, Compt. Rend. Acad. Bulg. Sci.,
36, 301-304 (in Russian).

Strong, H.R., Jr. (1968) Algebraically generalized recursive function theory, IBM J.
Res. Devel., 12, 465-475.

Tarski, A. (1955) A lattice theoretical fixpoint theorem and its applications, Pacific J.
Math., 5, 289-309.

Wagner, E.G. (1969) Uniformly reflexive structures: On the nature of Gédelization and
relative computability, Trans. Amer. Math. Soc., 144, 1-41.

Zashev, J.A. (1983) Recursion theory in partially ordered combinatory models,
Dissertation, Sofia University (in Bulgarian).

Zashev, J.A. (1984) Basic recursion theory in partially ordered models of some
fragments of Combinatory Logic, Compt. Rend. Acad. Bulg. Sci., 37, 561-564.

Zashev, I.A., B-combinatory algebras, Serdica Bulg. Math. Publ. (to appear).

Zashev, J.A. Recursion theory in B-combinatory algebras, Serdica Bulg. Math. Publ. (to
appear).

List of symbols

{U,——D,l,T,: 1!-

{0}, {0s}, cl(B/B), ub.T(O) 11

F 12,23,123,211
#t{f(sis"')sm t]=0) 12

= 13,23, 123
=35
°I, L, R 14,23

0, (@,) 14, 23, 123
¢l 1 14,28,.29
i 18 23

uhg, (£), (££) 16, 28
7B |

B 16,45

0 18,19, 34, 127,135
L, R, 18 32, 143
Z 19, 165, 169, 173
(P1s-5®a) 23

J 23, 163, 166
2,0, p 24

{ ¥y 2175

uAy, pAg, pA; 28
* 29 78

A 35

A 37

B, C 38

P,0,D 40

G 41

I*, (£)* 42

(£££) 44

H G5 3. 41
T 47, 211, 226
C,D, 48

B, 48,75

U,@ 51

Pl s8] 83

252

cl’) 62

U, K 66,67, 103
o* 68

Zo—2s 75

T tiA, tpA, tpA,, tuA,
2, 8t, Ko —K,,(8) 79
K3, Kq. 81

z, 8

K, K; 83

Co 84

(c*) 89

o LI 91
L,R" 91,123

@, ¢, 1d, M1, B, B 92
Z 93

Tr, It 95

100

To,Q,Q% «,,Q, 104
E, A, Q,, 105

Fﬂc, E* 106

Tf 108

7 111

{#:} 114,131

RN Y —

Id, 114,158
MI;, Tr,, II; 115
Thoy 17
I,nF, 123
flsf‘.’.: -E,E 124
1, T 127,155
{5}} 131
(%), (%), (dexx) 135
(%), (%), (xxx)g 136
(t=), (tx=), (t++x) 140
S 159

W, W,, W, 160
€ 160, 211, 240, 244

U* 164, 190, 217

Z, 169,173

" 173,228

Z 177,236

@, 178

(P-o,y) 178,204

P 179, 205
PC(Ns(rl‘ls---r'J’I] 186
SC(N,y1,....¢) 190

0, Lo 201

b = 202

d1s yl! ﬂﬂ"(p, ‘P(WH),CU) 203

List of symbols 253

425 Loy FI, 93, L1, K, Ev 204

b4, Lo 206

{a}p{b} 208

y*‘l]'_[*? L$ﬁ R*? E'} F} ((P’ Eb)*’
(= e.¥) 211

[. 214

TYU, of, T*, TX, ar(x) 226

ll’oa lpls 1:!‘;: lPl: le: ‘PS: w;s‘}‘;s ‘xfl!
Hi 227

¥, 227,238

[e}(x), {e}(x), {e} < () le, x],
H'ZFQ,'HZE 228

V. P %8, F, 236

¥, ¥, ¥, Y W, My 238

Subject Index

abstract structure 236
acceptable structure 244
adjunction operation 248

Bohm-Jacopini’s Theorem 180, 206

‘boldface’ theory 83, 236

4#,-Enumeration Theorem 222

4, -recursive function 221
mapping 221

#'-Enumeration Theorem 103

#'-polynomial element 101
mapping 101

4'-primitive element 101
mapping 101

4'-recursive element 100
-mapping 100

canonical term 205
C-Computability Theorem 179
C-computable function 179, 181
characteristic system 178
Church’s thesis 12
closure 11
coding scheme 240, 244
collection operation $4
combinatory space 211
complete lattice 155

numbering 69

0S 136
concentrating relation 237
consecutive spaces 92, 94
Conservativeness Theorem 97, 98, 112
continuous hierarchy of 108 152

pairing space 123
counter 160, 178
c-polynomial element 86
c-recursive element 86

mapping 86
CS-computable function 182

de Bakker—Scott’s system 204
degree 248

effective computability 12

clementary relation 236
Enumeration Lemma 66

254

Theorem 66, 77, 83, 90, 205

First 4,-Recursion Theorem 222
#'-Recursion Theorem 103
Recursion Lemma 39

Theorem 64, 65, 78, &8

first order model 17

Fourth Recursion Lemma 64

F-recursive functional 223

Friedman's computability 184

fuzzy relation 155

Generalized First Recursion Theorem 99
Recursion Theorem 72, 78
general recursive function 54

Hierarchy Conservativeness Theorem 116,

117

First Recursion Theorem 116, 118
hierarchy of 10§ 114
higher 1IOS 247

order model 17
Hoare rules 208
hyperarithmetical function 20
hyperprojective function 190

Imbedding Theorem 94

Incompleteness Theorem 202

inductive mapping 28, 96
relation 237

infinitary scheme 184

infinite expression 89

iteration operation 14, 28, 214

iterative combinatory space 214
operative space (IOS) 16, 28

Jj-object 226
jump operator 248

Kleene First Recursion Theorem see First

Recursion Theorem
-recursive function 228
-Recursiveness Theorem 233

A" -recursive function 227
| -recursive function 227

least fixed point 11

Subject index

number operator 12
‘lightface’ theory 83, 236

m-ary function 226
p-axiom 15
peinduction axiom 15
p-Induction Theorem 134
p-operation 11, 203
p-recursive function 54, 56
operation 19
p-Recursiveness Theorem 169
Modification Lemma 50
monotonic functional 13, 219
hierarchy of IOS 114
guantifier 104
Moschovakis First Recursion (Induction
Completeness) Theorem 221, 243
multiple-valued function 11
program scheme 183
multiplication operation 14, 23

n-ary basis 181
C-program 181
C-scheme 180
CS-program 182
CS-scheme 181
natural element 67
nondeterministic program scheme see
multiple-valued program scheme
normal element 212
mapping 123
segment 28
Normal Form Theorem 60, 61, 62, 76, 83, 87,
102, 103, 205, 206, 222
numbering 68

w-acceptable structure 240
operative space (OS) 16, 23
ordinal of computation 22§

pairing function 23
operation 14, 23, 123
scheme 23
space 123
partial recursive function 12, 56
stack function 174
Partial Recursiveness Theorem 171, 172
I3-function 20
Platek First Recursion Theorem see Hierarchy
First Recursion Theorem
polynomial element 45
mapping 48
polynomial* element 214
positive elementary relation 236
formula 236
inductive relation 237
relation symbol 236
Positive Inductiveness Theorem 242
precomplete numbering 69
preserving types mapping 123
prime #'-recursive element 101
mapping 101
canonical term 205

255

computable function 186, 187
recursive element 45, 115
mapping 48
Prime Computability Theorem 189
primitive element 45
mapping 48
recursion 12, 37
recursive element 45
function 12
mapping 48
operation 19
term 205
principal universal element 67
mapping 67
probabilistic function 194
Pull Back Theorem 46, 76, 96

rank 114, 132
Recursion Elimination Theorem 183
and Structurization Theorem 2035, 207
Theorem 68, 77
recursive element 16, 45, 115
mapping 48
program 183
scheme 183
recursive® element 215
mapping 215
recursively enumerable relation 172
register 177
regular segment 28
term 204
regular® segment 214
reliable estimate 196
representability 24, 53, 131
representation property 202
Representation Theorem 53, 54, 56, 86
restricted pairing function 163
Rice Theorem 68, 83, 90
right directed set 123
Rogers Theorem 69
Scott’s p-calculus see de Bakker—Scott’s
system
Scott’s p-induction rule 204
Search Computability Theorem 190
search computable function 190
second order relation 236
Second Recursion Lemma 39, 41
Theorem 67, 83, 90
Shepherdson's computability 190
simple segment 28
single-valued function 11
splitting scheme 124
stack 181
Stack Recursiveness Theorem 174
storing operation 79
Storing Operation Theorem 80
st-recursiveness 164, 187, 215, 244
strictly polynomial element 59
primitive element 59
strongly 7 -complete pairing space (7 -SCPS)
126
structured program 180

256 Subject index

subspace 23, 32 operation 14, 28
t-recursive element 76
F -complete pairing space (& -CPS) 126 mapping 76
F-continuous mapping 123 t-simple segment 78
F -continuously complete pairing space (¥- type 123
CCPS) 126

if, .. ,-recursive element 117 unary basis 177

ird Recursion Lemma 63 C-program 179
t-inductive mapping 78 C-scheme 178
t-operation 75 program 177
transfer operation 108 scheme 177
Transfer Operation Theorem 110 Undecidability Theorem 201
transition property 49 universal element 66
Transition Theorem 49, 50, 77, 90 mapping 66
Translation Elimination Theorem 160 unwinding method 43

Independence Theorem 43

translation method 64 weak representability 53

Mathematics and its Applications
Series Editor: G. M. BELL, Professor of Mathematics, King's College
(KQC), University of London

Artmann, B. The Concept of Number*
Balcerzyk, S. & Joszefiak, T. Commutative Rings*
Balcerzyk, S. & Joszefiak, T. Noetherian and Krull Rings*
Baldock, G.R. & Bridgeman, T. Mathematical Theory of Wave Motion
Ball, M. A. Mathematies in the Social and Life Sciences: Theories, Models and Methods
de Barra, G. Measure Theory and Integration
Bell, G.M. and Lavis, D.A. Co-operative Phenomena in Lattice Models Vols. I & 1I*
Berkshire, F.H. Mountain and Lee Waves

Berry, 1.S.. Burghes, D.N., Huntley, [.D,, James, D.J.G. & Moscardini, A.O.
Teaching and Applying Mathematical Modelling

Burghes, D.N. & Borrie, M. Modelling with Differential Equations
Burghes, D.N. & Downs, A. M. Modern Introduction to Classical Mechanics and Control
Burghes, D.N. & Graham, A. Introduction to Control Theory, including Optimal Control
Burghes, D.N., Huntley, I. & McDonald, I. Applying Mathematics
Burghes, D.N, & Wood, A.D, Mathematical Models in the Social, Management
and Life Sciences

Butkovskiy, A.G. Green’s Functions and Transfer Functions Handbook
Butkovskiy, A.G. Structural Theory of Distributed Systems
Cao, Z-Q., Kim, K. H. & Roush, F. W, Incline Algebra and Applications
Chorlton, F. Textbook of Dynamics, 2nd Edition
Chorlton, F. Vector and Tensor Methods
Crapper, G.D. Introduction to Water Waves
Cross, M. & Moscardini, A.O. Learning the Art of Mathematical Modelling
Cullen, M.R. Linear Models in Biology
Dunning-Davies, J. Mathematical Methods for Mathematicians, Physical Scientists
and Engineers

Eason, G., Coles, C,W, & Gettinby, G. Mathematics and Statistics for the Bio-sciences
Exton, H. Handbook of Hypergeometric Integrals
Exton, H. Multiple Hypergeometric Functions and Applications
Exton, H. g-Hypergeometric Functions and Applications
Faux, I.D. & Pratt, M.J. Computational Geometry for Design and Manufacture
Firby, P.A. & Gardiner, C.F. Surface Topology
Gardiner, C.F. Modern Algebra
Gardiner, C.F. Algebraic Structures: with Applications
Gasson, P.C. Geometry of Spatial Forms
Goodbody, A.M. Cartesian Tensors
Goult, R.J. Applied Linear Algebra
Graham, A. Kronecker Products and Matrix Caleulus: with Applications
Graham, A. Matrix Theory and Applications for Engineers and Mathematicians
Griffel, D.H. Applied Functional Analysis
Griffel, D.H. Linear Algebra*
Hanyga, A. Mathematical Theory of Non-linear Elasticity
Harris, D.J. Mathematics for Business, Management and Economics
Hoksins, R.F. Generalised Functions
Hoskins, R.F. Standard and Non-standard Analysis*
Hunter, §.C. Mechanics of Continuous Media, 2nd (Revised) Edition
Huntley, 1. & Johnson, R.M. Linear and Nonlinear Differential Equations
Jaswon, M.A. & Rose, MLA, Crystal Symmetry: The Theory of Colour Crystallography
Johnson, R.M. Theory and Applications of Linear Differential and Difference Equations
Kim, K.H. & Roush, F.W. Applied Abstract Algebra
Kosinski, W. Field Singularities and Wave Analysis in Continuum Mechanics
Krishnamurthy, V. Combinatorics: Theory and Applications
Lindfield, G. & Penny,].E.T. Microcomputers in Numerical Analysis
Lord, E.A. & Wilson, C.B. The Mathematical Description of Shape and Form
Marichev, O.1. Integral Transforms of Higher Transcendental Functions
Massey, B.S. Measures in Science and Engineering
Meek. B.L. & Fairthorne, S. Using Computers
Mikolas, M. Real Function and Orchogonal Series
Moore, R. Computational Functional Analysis
Miiller-Pfeitfer, E. Spectral Theory of Ordinary Differential Operators
Murphy, J.A. & McShane, B. Computation in Numerieal Analysis*
Nonweiller, T.R.F. Computational Mathematics: An Introduction to Numerical Approximation
Ogden, R.W. Non-linear Elastic Deformations
Oldknow, A. & Smith, D. Learning Mathematics with Micros
O'Neill, M.E. & Chorlton, F. Ideal and Incompressible Fluid Dynamics

O'Neill, M.E. & Chorlton. F. Viscous and Compressible Fluid Dynamics*

Page, 5. G. Mathematies: A Second Start

Rankin, R.A. Modular Forms
Ratschek. H. & Rokne, 1. Computer Methods for the Range of Functions
Seorer, R.S. Environmental Aerodynamies
Smith, D.K. Network Optimisation Practice: A Computational Guide
Srivastava, H. M. & Karlsson, P.W. Multiple Gaussian Hypergeometric Series
Srivastava, H M. & Manocha, H.L. A Treatise on Generating Functions
Shivamoggi. B.K. Stability of Parallel Gas Flows*
Stirling, D.S.G. Mathematical Analysis*
Sweet, M. V. Algebra, Geometry and Trigonometry in Science, Engineering and Mathematics
Temperley, H.N.V. & Trevena, D.H. Liquids and Their Properties
Temperley, HN.V. Graph Theory and Applications
Thom, R. Mathematical Models of Morphogenesis
Toth, G. Harmonic and Minimal Maps
Townend, M. S. Mathematics in Sport
Twizell, E.H. Computational Methods for Partial Differential Equations
Wheeler, R.F. Rethinking Mathematical Concepts
Willmore, T.J. Total Curvature in Riemannian Geometry
Willmore, T.J. & Hitchin, N. Global Riemannian Geometry
Wojtynski, W. Lie Groups and Lie Algebras*

Statistics and Operational Research
Editor: B. W. CONOLLY, Professor of Operational Research, Queen
Mary College, University of London

Beaumont, G.P. Introductory Applied Probability
Beaumnont, G.P. Probability and Random Variables*
Conolly, B.W. Techniques in Operational Research: Vol. 1, Queueing Systems™
Conolly, B.W. Technigues in Operational Research: Vol. 2, Models, Search, Randomization
Conolly, B.W, Lecture Notes in Queueing Systems
French, S. Sequencing and Scheduling: Mathematics of the Job Shop
French, S. Decision Theory: An Introduction to the Mathematics of Rationality
Griffiths, P. & Hill, 1.D. Applied Statistics Algorithms
Hartley, R. Linear and Non-linear Programming
Jolliffe, F.R. Survey Design and Analysis
Jones, A.J. Game Theory
Kemp, K.W, Dice, Data and Decisions: Introductory Statistics
Oliveira-Pinto, F. Simulation. Concepts in Mathematical Modelling*
Oliveira-Pinto, F. & Conolly, B.W. Applicable Mathematics of Non-physical Phenomena
Schendel, U. Introduction to Numerical Methods for Parallel Computers
Stoodley, K.D.C, Applied and Computational Statistics: A First Course
Stoodley, K.D.C., Lewis, T. & Stainton, C.L.S. Applied Statistical Technigues
Thomas, L.C. Games, Theory and Applications
Whitehead, J.R. The Design and Analysis of Sequential Clinical Trials

*In preparation

