PART D

Constructing operative spaces




CHAPTER 16

Pairing spaces

In this chapter we introduce certain algebraic systems, ‘semi-manufactures’
from which one can construct OS. Roughly speaking, these systems are OS
without multiplication. The necessity of considering such simpler algebraic
systems is suggested by 12.1, where an OS . was constructed from a given
space & assumed (somewhat excessively) to be an OS.

Some preliminary notions. Let # be a nonempty partially ordered set, let
7 be a nonempty right directed set (i.e., a partially ordered set each two
members of which have an upper bound) and let (. — & . Letters @, \, 1,
f, T will stand for members of # and a, b, ¢ for members of 7. We call t(¢)
the type of @ and write #, for {o/pe# &t(p) < a}. A mapping I':F"—F
preserves types iff I'(#F%) =, for all a, while I' is normal if 3aVb>a
(I'(#}) =.%,). Clearly, any type preserving mapping is normal. An n-ary
mapping I is 7 -continuous iff whenever for all i, | <i<n, {¢;,.}nis a chain
(i.e., increasing countable sequence) in # ., p;e# and ¢, =sup,,@;,,. then
SUP, (01 pys---» Pue) €Xists and equals I'(¢y,...,0,). Notice that all 7 -
continuous mappings are monotonic. If F is a singleton, then the
Z -continuous mappings are exactly the continuous ones and all the mappings
over .# preserve types. ("‘Continuous’ means countable continuous here.)

Let IT: %*— % and L,R":% —%. As usual, (@, ) will stand for II(¢,y).
The quadruple % = (#,I1, L, R’) is a pairing space iff the following hold.

1. I, L, R’ are monotonic,
2. L((@. ) = @. R((p.¥)) = V.

In other words, I1 is a pairing operation and L, R are its inverses. To exclude
trivialities assume that % is not a singleton.

A pairing space % is continuous iff so are I, L, R".

The following two statements are immediate.

Proposition 16.1. Let # be a set with at least two distinct members,
let I1:.4 % — % beinjective and let L, R":.% —.% be its inverses. Take ¢ < iff
@=1. Then ¥ =(#,I1, L, R’) is a continuous pairing space.

Proposition 16.2. Whenever (#,I,11,L,R) is an OS, then (#,I1,46.L0,
A6.R8) is a pairing space.
‘We now give several constructions which yield pairing spaces.
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124 Constructing operative spaces [Part D

Proposition 16.3. Let M be a nonempty set, let /', f5: M — M be injective and
suppose that (M) f;(M)= . Let E be a partially ordered set with at
least two distinct members and let ¢ be a fixed member of it. Take # ={¢/¢:
M—E}, @<y iff ¥s(os)<i(s), (@ )(f1(s))=o(s), (@,¥)(f2(s))=1(s)
and (¢, r)(s) = e otherwise, L(¢) = is.¢(f,(s)) and R'(¢@) = As.(f5(s)). Then
& = (.11, L, R) is a continuous pairing space.

Proof. We have

L{(p,¥)) = As.(@, ¥)(/1(5)) = As.0(5) = @

and similarly R'({q@, )= .

We are going to show that L, R’ are continuous with respect to least upper
bounds of arbitrary subsets of #, while I is continuous with respect to least
upper bounds of nonempty subsets of #. But let us show first that whenever
peZ and # = 7, then ¢ =sup # iff ¢(s)=sup {6(s)/0c s} for all s.

Suppose that ¢ =sup#. Then 8(s) < ¢(s) for all s and e, Let seM,
deE and 8(s)<d for all fe#. Taking t(s)=d and t(t)= @(t) otherwise,
we get # <t for all 8es#, hence ¢ <, which implies o(s) < d. Therefore,
o(s) = sup{0(s)/0en}.

Conversely, suppose that @(s) = sup {0(s)/0e#"} for all 5. Then 0 < ¢ for all
Bes. If 8 <t for all fe3#, then 8(s) < t(s) for all B and all s, hence
tp(s) < t(s) for all s. Therefore, ¢ < 1, which gives ¢ = sup .#.

Now let ¢ = sup #°. Then we have

L(@)(s) = o(f1(s)) =sup {6(f(s))/Be "} = sup {L(0)(s)/0e '}

for all s, hence L(¢p) =sup L'(#°) and similarly R'(p) = sup R'(#).
Let o#,, ¢, # &, o =sup #, and ¥ =sup #,. Then

(@, ¥)(f1(5)) = p(s) = sup {6(s)/ 0, } = sup {(0,7)(f,(5))/0e H , &reH,}.

Similarly, (¢, 1)(f2(s)) = sup{ (6, )(f(s))/e#', &ve#,}, while (p,0)(s) =
e=sup{(0,7)(s)/0cH &reH,} otherwise.  Therefore, (¢, ))(s) =
sup {(8,7)(s)/0cH  &re A, } for all s, hence (p,) =supIl(#°,H#,). The
proof is complete.

Some remarks are in order here.

If M, f,, f, satisfy the assumptions of 16.3, then f,, f, is said to be a splitting
scheme for M. A slightly more general notion of splitting scheme is considered
in Ivanov [1980, 1980b]. Multiple-valued splitting could also be of some
interest.

Splitting schemes have already been used to construct OS in examples 4.7,
4.8. As mentioned there, all infinite sets admit splitting schemes. However,
this general assertion depends on the axiom of choice, which is not the case
in some particular instances. On the other hand, no set augmented with a
splitting scheme can be finite since the members of the sequence { f5(f,(s))}
are pairwisely distinct for all s.

If M =w, then splitting schemes for M can be naturally specified. For
instance, one may take f, = 1s.2s5, f, =15.25 4+ 1 as in example 3.1, or f, =
A8.3s, f,=14s.3s4 | as in example 4.3 etc.
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The set M =w*=| )" can also be augmented with a natural splitting
scheme. Writing A for the empty sequence and omitting brackets and commas,
one may take f, = Ax.0x, f5(A)=A and f,(nx)=n+ Ix.

If & is a limit ordinal and M = {£/¢ <&}, then one may take [, =
AE2E Fo=dE.28 41

An arbitrary nonempty set M, can be extended to a wider one which
admits natural splitting schemes, e.g. M=w x M, or M =w* x M,. If M,
is finite, then another possible extension is M = M, U .

More generally, whenever fy, f, is a splitting scheme for M and N is a
nonempty set, then Asx.(f,(5), x), Asx.(f5(s), x) is a splitting scheme for M x N.
It follows in particular that 16.3 holds with M x N playing the role of M.

Proposition 16.4. Let M, f,,f,, E,e be the same as in 16.3 and N be an
arbitrary nonempty set. Take % = {¢/p:M x N = E}, ¢ <y iff Vsx(g(s,x) <
!,b(S,X}}, (o, lyb){jl (S], X} e ‘P(-": x), ((»0: If&)(fz(s)a x] o w[ssx] and (o, ',5’)(31 X)=e
otherwise, L(¢)=/isx.@(f,(s),x) and R'(p)= isx.¢(f5(s)x). Then & =
(#,1I1, L, R’) is a continuous pairing space.

The existence of a splitting scheme is the standard assumption we regard
as necessary for the development of a computability theory over the object
domain M. This requirement is essentially weaker than the existence of a
computable pairing function for M assumed in Platek [1966], Moschovakis
[1969], Fenstad [1980], Skordev [1980] and other works. Indeed, given a
pairing function J and two fixed distinct members s,, s, of M, then f, = As.
J(5y,5) and f, = As.J(s,, 5) is a splitting scheme for M.

Let M be the open interval of reals (0, 1). Then f, = As.s/2, f, = As.(s + 1)/2
is a splitting scheme for M. Notice that f,, f5 (and f, ',f5 ') are continuous
functions in the ordinary sense, while a well known theorem of Weierstrass
rules out the possibility of a continuous pairing function for (0, 1). This fact
is not insignificant since an approximation of reals by means of rationals
would only be justified if continuous functions are used in the computations.

Another advantage of splitting as compared with pairing is that, as
mentioned above, whenever M has a splitting scheme and N is a nonempty
set, then we obtain a natural splitting scheme for M x N. (This property is
shared by the so called restricted pairing to be introduced in chapter 21.)

In order to consider a *boldface’ computability with arbitrary members of
M allowed as enumeration indices however, one has to have a pairing function
for M. This is arranged in our general theory by means of operation St. (CI.
exercises 10.1,10.9.)

Given an arbitrary nonempty set M, then the wider set w x M* =w x
(J.M" admits a natural pairing function. One may take

JE B Sia i [ By e B Y = (g U, L) 8 ey Bing Ep s B

where J, codes triples of natural numbers. Of course, this extension of M
does not differ essentially from that of Moschovakis [1969]. A common
disadvantage of the extensions of all kinds is that one is interested in functions
(relations etc.) over the set originally given which have to be distinguished
from the others.
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The following general construction produces new pairing spaces from given
ones. :

Proposition 16.5. Let & = (#,I1, L, R') be a pairing space. Take #' = {¢'/¢":
F - F )0 <P iltv0(e'(0) < y'(0)). IT'(¢", ') = 20.(¢'(0), ' (0)), L'(e") = 20.
L(¢'(6)) and R"(¢)=A8.R'(¢'(6)). Then & =(#",IT,L',R") is a pairing
space. Writing ¢ for Af.e, the structure & =(F,II'[Z%LL %,
R" %) is a subspace of &’ isomorphic to &.

Proof. If ¢' </, then

L'{¢')(6) = L(¢'(0)) < L(y'(6)) = L'(y')(6)

for all 6, hence (') < L'(1)'). Therefore, L' is monotonic. The monotonicity
of R",IT" is verified similarly. It follows that

L'((¢",4))(0) = L{(¢'(6), ¥'(6))) = ¢'(0)

for all 6; hence L'((¢,y))=¢'. Similarly, R"((¢',")) = '; hence &' is a
pairing space. & and & are isomophic since ¢ <y iff ¢ <y, (g.f)=
(@), L'(@) = L(p)” and R"(¢) = R'(¢)". The proof is complete.

Proposition 16.6. Proposition 16.5 holds with ‘continuous pairing space’
substituted for ‘pairing space’.
Proof. The argument adduced in the proof of 16.3 applies here to ensure
thatif o'e #', #' = F', then ¢’ = sup #" iff ¢'(A) = sup {#'(6)/6'e#"} for all 0.
Let {¢,} be a chain in #' and ¢'=sup,e,. Then ¢'(6) =sup,¢,(0) for
all #; hence

L'(¢)(0) = L(¢'(6)) = sup L(¢;(6)) = sup L'(¢;,)(6)

for all 8 by the continuity of L. Therefore, L'(¢") = sup, L' (¢,). The continuity
of R",IT is verified similarly. The proof is complete.

Pairing spaces will be used to construct OS, but not all the pairing spaces
give iterative OS. We introduce certain special kinds of pairing spaces
which do.

A pairing space ¥ =(#,II, L, R’) is said to be F -complete (F-CPS) ilf
the following hold.

1. II, L, R' prescrve types.

2. For any aeZ and any well ordered subset # of %, there is peF,
such that ¢ =sup # in #.

A 7 -complete pairing space is strongly 7 -complete (7 -SCPS) if whenever
aed,# is a well ordered subet of %, and @ =sup# in &, then L(p)=
sup L(#), R'(p) = sup R'().

A pairing space & is 7 -continuously complete (7 -CCPS) if the following
hold.

1. IL, L, R’ are ¥ -continuous.

2. I, L, R preserve types.

3. Forany a and any chain {¢,} in # , there is pe# , such that ¢ = sup, ¢,
in #.




Ch. 16] Pairing spaces 127

4. Z has a least element O.

If 7 is a singleton, then we say complete pairing space (CPS), strongly
complete pairing space (SCPS), continuously complete pairing space (CCPS)
respectively for 7 -CPS, 7 -SCPS and 7 -CCPS. Notice that all CCPS are
also continuous pairing spaces.

Proposition 16.7. If . is a 7 -CPS, then there is Oe # such that O < ¢ for all
¢ and t(0) < a for all a.

Proof. For all a the set ¥ is a well ordered subset of .# ; hence there is
an Oe#, such that O =sup f in #. Therefore, the element in question is
one and the same in all #; hence 0 < ¢ for all ¢ and t(0) < a for all a.
The proof is complete.

We shall assume without loss of generality that the element O in the
definition of 4 -CCPS also satisfies the inequality £(0) < a for all a. Otherwise
one can embed  into an upper semilattice 7' by the construction given in
16.11 below and then take 9, = {¢(0) v a/ac7 '} and t,(0)=1(0) v t(¢),
thereby ensuring that & is a 7 -CCPS and t,(0) < a for all ac 7 .

The pairing space of 16.1 is neither a 7 -CPS nor a .7 -CCPS since it lacks
a least element 0.

Proposition 16.8. Let %, E be the same as in 16.3, and suppose that E has a
least member L and all chains in E have least upper bounds. Then %
is a CCPS.

Proof. The element O = /s. L is a least member of #. By the proof of 16.3,
it suffices to prove that all chains in # have least upper bounds.

Let {@,} be a chain in . Take ¢ = As.sup,,(s). Then ¢ = sup,¢, by the
proof of 16.3. The proof is complete.

Proposition 16.9. Let &, E be the same as in 16.3 and suppose that all well
ordered subsets of E have least upper bounds. Then & is both a SCPS and
a CCPs.

Proof. By the proof of 16.3, it suffices to show that all well ordered subsets
of & have least upper bounds.

If # is a well ordered subset of &, then {0(s)/0e#} is a well ordered
subset of E for all 5. Taking ¢ = As.sup {0(s)/0e#}, we get ¢ = sup H#, which
completes the proof.

Proposition 16.10. Let %, E be thesame asin 16.4. If E has a least member and
all chains in E have least upper bounds, then .% is a CCPS. If all well ordered
subsets of E have least upper bounds, then & is both a SCPS and a CCPS.

This follows from 16.8, 16.9,

The construction of 16.3 is quite general, providing a variety of examples.
Multiplication can be directly introduced in some of them to give OS or 1OS;
such examples will be studied in detail in chapter 21. By way of illustration we
sketch a few possibilities here.

Take E={1,T}, L <T.Then the space & of 16.3 is both a SCPS and a
CCPS by 16.9. The members of & may be regarded as subsets of M. Namely,
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interpreting o(s) = L, p(s)= T as s¢o, s€g, it lollows that F = {¢/p = M}
and ¢ < ¢ ifl @ <. Otherwise, ¢(s) = L could be interpreted as sc¢, so that
o <y iff y = ¢ in this case.

Take N = M and E as above. Then the space % of 16.4is botha SCPS and a
CCPS by 16.10. The members of # may be regarded as subsets of M?, i.e. as
binary relations on M. This can again be done in two ways, with either ¢ < v iff
¢ Sy or @ <y iff ¢ < . Moreover, the members of # may be regarded as
partial multiple-valued functions over M in two ways, with te@(s) iff (s, t)e @ or
teq(s) ilf (t,s)eq respectively.

One may substitute the interval [0, 1] for { L, T} above. Then the resulting
spaces consist of relations which can be regarded either as fuzzy or probabilis-
tic, depending on how a multiplication operation is introduced.

The following basic construction is an adaptation of 16.5 in the case of
complete spaces.

Proposition 16.11. Let & =(#,I1,L,R") be a #-CPS (#-SCPS). Take
F' =g /0" F - F &¢ is normal}, <,IT',L",R",# as in 16.5,

T'={d/P<d =T &Vablacd' &a <b=beda)},

ad<b iff bcd and t'(¢)={a/¥h>ale(F,) = F,)}. Then ¥ =(F"1I,
L', R") is a F'-CPS (respectively, 7'-SCPS) and &, & are isomorphic.

Proof. We first consider % '. Obviously, " is a partially ordered set.
Notice that a' <k iff Yheb'Jaca'(a<bh). Let a',b'ed". If aea’, beb’ and
¢>a,b, then cea’ nb’, hence a’'nb’ = & and a' nb'eF'. Moreover, a',b' <
a'mb’, hence 7 is a right directed set. In fact, 7" is an upper semilattice
and 4 is embedded in ' by assigning to each aeZ the member {b/a < b}
of 7,

Let ¢'ce#'. Then t'(¢')# @ and aet(p’), a<b imply bet(p’); hence
t(p)eT”.

Suppose that ¢'e &' and aet’(¢'). Let b > a and 8% ;. The mapping @' is
normal, so that ¢'(8)e % ,. The mapping L preserves types; hence L(p'(0))e 5,
ie. L'(¢")(6)e#F ,. Therefore the mapping L"(¢") is normal, hence L'(¢p')e #".
The above argument gives also t'(¢") € t'(L"(p")), i.e. £'(L"(¢") <t'(p"); hence
L’ preserves types. Similarly, R": ' =", [1".%'? -+ %" and R", 11" preserve
types. The verification that % is a pairing space follows the proof of 16.5.

Suppose now that a'eZ " and #' is a well ordered subset of #,.. Let
0%, aca' and b= a,1(0). We have aet'((') and 8'(0)e #, for all &'e.#” since
t'(8") < a'. Therefore, {6'(0)/0'e3#"} is a well ordered subset of %, so there
is a 7,6 %, such that t,=sup {6(0)/0'e 2"} in F. The mapping ¢’ = A0.1, is
normal and a’ = ¢'(¢'); hence ¢'eF).. It is immediate that ¢’ = sup #" in F".
Therefore, & is a 77'-CPS.

Suppose that .% is strongly 7 -complete. If 2#” is a well ordered subset of
Foand @' is the same as above, then

L'(')(6)= L(¢(8)) = Lisup {0(0)/0 e #"}) = sup {L(06))/0' e "}
= sup {L'(6)(6)/6 e "}
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for all 8, hence L'(¢p') = sup L'(#"). Similarly, R"(¢') = sup R"(#"), hence ¥ is
a J'-SCPS.

The isomorphism of &, & is established as in 16.5, noting that the mappings
¢ are normal, so that % = #". It also follows that (@) = {a/t{¢) < a} and
whenever # = % , and ¢ = sup 3, then ¢ = sup & in #'. This completes the
proof.

It is worth mentioning that & is a proper subspace of & since L,
ReF\Z.

Proposition 16.12. Proposition 16.11 holds with ‘7 -CCPS’, ‘7'-CCPS
substituted respectively for 7 -CPS’, *7"-CPS.

The proof follows that of 16.11. The mappings O = /6.0 is a least member
of #'.

EXERCISES TO CHAPTER 16

Exercise 16.1. Let % =(#,I1, L, R") be a pairing space with a least element
0.Take F'={¢'/B 'S F}, o' <y il Voeo'Ipey'(p <y), M, )=
(¢, ¥"), L"(¢") = L(¢') and R"(¢') = R'(¢"). Show that &' =(%",II', L", R") is
both a SCPS and a CCPS.

Remarks. Therelation < isnot antisymmetric, hence # ' is a quasi-ordered
rather than partially ordered set and should be factorized. One may construct
&' in a slightly different manner, taking #'={¢'/@ =o' = F &V oylp <
y&yep =peg)}, ¢ <y ill ¢’ = '; no factorization is needed then.

One advantage of the construction of exercise 16.1 is that it gives a complete
space without requiring % to be complete. Take for instance the pairing
space &, obtained from the OS of example 3.1 by 16.2, then take its subspace
% consisting of functions with finite domains. The pairing space % has a
least element but is neither a CPS nor a CCPS.

On the other hand, the above construction has a drawback. While the
given pairing space % is isomorphic with the subspace &, of %’ based on
Fo=1{{0}/peF}, one can not expect that whenever & is a CPS (or CCPS),
then &, is a subspace of %' as a CPS (a CCPS). It may well happen that
@ = sup, ¢, and ¢ # @, for all n, so that {@} # sup, {e,}.

Exercise 16.2. Let N be a nonempty set and %, be a 7 -CPS (respectively,
7 +SCPS, .7 ~CCPS) for all seN, Take & = X 37, i.e.

F ={o/o:N-| ) 7 ,&Ys(e(s)eF )},
seN
@ < P Hff Vs(q(s) < Y(s)). (. 4h) = As.TI(q(s), (s)), L(ep) = As. Li{op(s)). R'() =
1s.RU@(5)), T = X oonT 5, a < b iff Vs(a(s) < b(s)), and () = As.t,(¢p(s)). Show
that & =(#,II,L,R) is a 7 -CPS (respectively, 7 -SCPS, 4 -CCPS). In
particular, if &, is a CPS (SCPS, CCPS) for all s, then so is .&.

Exercise 16.3. Let & be a pairing space and (L(e), R'(¢)) < ¢ for all ¢. Show
that IT is continuous with respect to least upper bounds of nonempty subsets
of #.
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Hint. Supposing Fc#, #,SF,@,=supA#,, @,=supiH, and
(,7) < @ for all e #° |, te # 5, show that ¢, < L(¢), ¢, < R'(¢p), which implies
(P19l < 9.

Exercise 16.4. Let & be a pairing space and (L(¢), R'(¢)) > ¢ for all . Show
that L', R" are continuous with respect to least upper bounds.

Hint. Supposing ¢ =sup # and L(0) <t for all 0, get ¢ <(z,R(9)),
which implies L(p) < .

As a corollary to the last two exercises, whenever II(#,#) =% and & is
7 -complete, then it is also strongly and continuously 7 -complete.

Exercise 16.5. Let % be the pairing space of 16.3 or 16.4. Prove the following
assertions. If [, (M)uf,(M)< M, then Vo((L(e), R'(¢)) < ¢) ill e <d for all
deE, while Yo((L(@), R(p))> @) il Vdle>d). Finally, II(#,F)=% iff
filM)Of(M)=M.

Exercise 16,6, Let & be a -CPS (7 -SCPS, 7 -CCPS) and ae4 . Prove
that &, =(#,M1}1#2, L} %, R | #,) is a CPS (respectively SCPS, CCPS).

Exercise 16.7. Take Z = {gp/o < w?}={p/p:0—2°}, o<y iff o=y,
(0, ¥)(35) = 0(s), (2, ¥)(3s+ 1) =t(s). (@.y)Bs+2)T, Li@)=4s.¢(3s) and
R'(@) = As.@(3s+ 1), if Dom¢ = @, and L(g), R(p)=w? otherwise. Show
that & = (#,I1,L,R’) is a CPS but neither a SCPS nor a CCPS.

Hint. Take a chain {¢,} of single-valued functions such that Dom ¢, = w
for all n and | J,Dom ¢, = w. Then L(sup,,) # sup, L(¢,).

Exercise 16.8. Let % = (%, 11, L, R') be the pairing space of 16.4 with N = M*®
and E={1,T}, L<T. Take #, = {peZ /AmTk(p({s,}) = T=Sn+x =Sm}
F =m and

t(p) = min {m/Vk(p({s,}) =T =51 = 5n)}-

show that while &, =(# 1| #i,L' | #,R' | #,) is both a 7-SCPS and
a -CCPS, it is neither CPS nor CCPS.

Hint. Notice that ¢ < implies () < t(y), so any chain {¢,} such that
t(ep,) = n for all n will have no upper bound in #,.




CHAPTER 17

Hierarchies of pairing spaces

Starting with a 7 -complete (strongly 7 -complete, continuously 7 -complete)
pairing space &, we construct in this chapter a whole hierarchy {#} of
& -complete (respectively, strongly 7 ~complete, continuously 7 ~complete)
pairing spaces, obtaining new examples of such spaces. The construction
employed will also be useful later when building hierarchies of IOS.

To begin with, we construct an associated hierarchy of type sets {7 }.

Proposition 17.1. Given a nonempty right directed set 7, for all ¢ right
directed sets 7, can be constructed such that 7, = 7, the set 7 . is obtained
from 7, by 16.11,if E= ¢, + 1, while 7, = {n,a)n<t&aed ,},if>01s
a limit, and if & < n, then the members of 7 . are represented in 7, by members
of 7, (by themselves, if £ = #) in such a way that the following condition is
satisfied.

") Ify, <n<n, aeF,,!,beé’T,n,a’, a’ represent a respectivelyin? ,,, 7,
and b’ represents b in 7, then a' < b iff a" < b".

Takingn, = n, = ¢ in particular, it follows that 7 . is isomorphic to a partially
ordered subset of 7, provided £ <.

Proof. By transfinite induction on ¢.

Take 7¢=7.

Suppose that & >0, right directed sets 7, have been constructed for all
n< ¢ and if n, <4, <#, then a member of 7, is assigned to each member of
7 ,, in such a way that (1) holds. This is the induction assumption.

We consider two separate cases, depending on whether ¢ is a successor
or a limit ordinal.

L E=& 4+ 1.

We obtain 7, from 7, by 16.11. A member a of 7, is represented in
T by d ={bbeT , &a<b} IIn<&,acT,, a represents a in 7, by the
induction assumption and a” represents ¢’ in 7 ., take a” to representain 7 .

Suppose that n; <, <¢& aed,,, be ,, and a' represents a in .. Then
n, <#, <&, and the induction assumption provides (¢,), hence a <b iff
a" < b, where a", b’ represent a,b in 7. If @”,b" represent a,b in 7, then
a" < b'iff a” < b" by the definition of a”, b” and the construction of 7. There-
fore, condition (£) is satisfied. (The case of n, = £ is obvious.)

2. ¢ is a limit ordinal.

131
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Take 7, ={(n,a)/n < ¢&aeT ,} and (5,a) <({,b) iff n <{&a' < b, where
a represents ain 7 . The relation < is obviously reflexive and antisymmetric.

Suppose that (,a,) < (13, a;) and (175, @,) < (13, a3). Let @}, af represent a;
respectively in 7, 7, and a; represent a, in 7, It follows that
n,<#,<ny and aj <a, hence aj <a, by (n;). Then a) <a; implies
a < a3, hence(n,,a;) < (11, @5). Therefore, < is transitive and & . is a partially
ordered set.

Let(n, a),({, b)e T .. Take &, = max {n, [}, @, b’ to represent a, bin J ; , then
take ce 7, such that ¢ > a',b". It follows that ({;,c)eZ ; and (1, a), (&b <
(¢y,c) hence 7 ; is right directed.

IfacT,, q < 5, then take (1, a) to represent aing . Letyn, <n,<{aed,,
be7 ,,and a' representain 7, Then a' < biff(y;. a) < (#,, b) by the definition
of < in 7 . Therefore, condition (&) is satisfied. The proof is complete.

Proposition 17.2. Let & be a 7 -CPS (respectively, 7 -SCPS, 7 -CCPS) and
{7} be obtained from Z by 17.1. Then for each ordinal { a 7 ,-CPS
(7 =SCPS, 7 ~CCPS) ¥, can be constructed such that whenever { <#, &
is a proper subspace of &,

Proof. By transfinite induction on ¢.

Take ¥y =% and t;=t.

Suppose that ¢ >0 and 7 ,-CPS (respectively, 7 ,-SCPS, 7 ,-CCPS) &,
w1th type functions ¢, have been constructed for all y<£. Whenever

= + 1<, let &, be obtained from &,, by 16.11 and let the subspace
55,,1 of &, be 1dent11"ed with &, . Whenever n <¢ is a limit ordinal, then
let all 5’9;,':{?? be subspaces of'SP and =<, 7 If pe| Jy<:7,, then
the ordinal /() = min {y/peF } (zero or successor) is called the rank of ¢.
Finally, whenever # < ¢ and { = r(p) <#, let t{¢) be represented in 7, by
t,(¢). This is the induction assumption.

There are two possibilities.

L =&+ 1.

Obtain &, t, from &, , ¢, by 16.11.

Let peZ, and { =r(p) <& Then { <¢,, hence rgl(qo represents t,(¢) in
T ¢, by the induction assumption. The proof of 16.11 gives ¢,(¢) = {atsﬁ";1
t:(¢) < a}, which is exactly the member of .7, representing t; (¢) in J ..
Therefore, tp) represents (@) in J .. The remaining assertions of the
induction clause follow from the proof of 16.11 (16.12).

2. & is a limit ordinal.

Take # .= ), <7, and t,(0) = (1), L, () for all peF,. Take ¢ <.
iff @ <, M, ) =T (p,¢), writing simply (¢, )= (¢,¥),, where =
max {r(e),H(y)}, and L,s(t,o} Lie), R{p)= R{y), where { =r(¢p). It follows
that whenever { <n<¢, then (g, iﬁ)c— (@), Lilo)=Ly(p), Rdp)=R,()
and @ < ) iff ¢ <. Therefore, the quadruple 5";=(9’¢,H§,L§,R¢) is a
pairing space since so are %, for all n <¢.

If { = r(p) < ¢, then tp) —(i t{p)) represents t{¢p) by the proof of 17.1.

Let 1) = (n.1,(0). 1) = (6D (61, 0T, and 140), L)< (E1,a)
Then n{<é, t¢]((,0) te () represent 1,(p), t{y) in T and t;(9)
te,(¥) < a. It follows that 1), r() < &,, hence ¢, yeF ., so (¢, ), #, and
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te,((@, ¥)e) < a since T, preserves types. Let &, =r((@,¥)). Then &, <&y,
tel (g, ¥)d) = (Eas e (0, W1)e)) and t,,((¢, ¥).) represents .,((¢,Y)) in T, hence
td(@,¥)s) < (&), a). (Observe that (¢,¥): = (¢, )z, =(¢,¥)z,.) Therelore, II,
preserves types. Similarly, L; and R} preserve types.

Let ae7 ; and # be a well ordered subset of #,,={peZ /t{p) < a}.
Then a = (n, b) for certain n < ¢, b€, and 1,(0) < a implies 87, 1,(6) <b
for all 0e#. Therefore, # is a well ordered subset of 7, ;. There is by the
induction assumption a e #, , such that ¢ = sup # in #,. We get t(p) < a
by condition (&) of 17.1, hence peF . ,. It follows that 8 < .¢ for all fe#".
Suppose that te.#; and 0 <t for all 0e#. Taking { = max {5, (1)}, we get
{<¢ H#<=F, 1eF, and 0 <7 for all fe#°. However, o =sup ¥ in F,
since &, is a subspace of &, by the induction assumption, hence ¢ <7 which
implies ¢ <.7. Therefore, ¢ =sup J# in #,. This argument implies that .%’;
is a 7 ~CPS and whenever 1 < ¢, then ,9"‘,?'is a subspace of #,.

Assuming & a 7-SCPS, we show in addition that L) = sup LX) in
7 ; using the fact that Li(@) = sup L;() in #, where #’,n, ¢ are as above.
The case of R} is treated similarly.

Finally, assume that & is a 7 -CCPS. Let {¢,}, {,} be chains in #,,
a=(n,b), n<¢and beF . Then {@,}, {¥,} are chains in #, ;. There are by
the induction assumption ¢,¥eZ,, such that ¢ =sup,q, ¥ =sup,y,,
(@, ), =sup, (@, W), Lif@)=sup,Li(e,) and Ri(e)=sup,Ri(¢,) in F,.
Proceeding as above, we get @, Y €% . , and @ = sup, @, ¥ = sup, ¥, (¢, ¥); =
Supn(qjm k‘f’n)z: L:((p} = Suan’.:(Q)n}a RT;((P] = Suan:j((Pn} il'l y;" T]'lE E‘llement
Oe# satisfies the inequality O <. for all peZF . since O <, 0 for all peF,
n < &. Therefore, ¥, is a 7 ~CCPS, which completes the induction and the
proof.

EXERCISE TO CHAPTER 17

Let & be a CPS let {#,;} be a hierarchy based on it constructed by 17.2.
The following exercises show how the types arise in initial segments of the
hierarchy; the same happens if one starts with a SCPS or a CCPS.
Exercise 17.1. Show that &, is a CPS for all a.

Exercise 17.2. Show that &, is a @-CPS with a type function ¢, =r.

Exercise 17.3. Show that #,,,., i8 a w-CPS with a type function
bt ns 1) = Min (/YK > M(O(F 4 40) € F gpn0)} for all n.



CHAPTER 18

Conditions sufficient for
1terativeness

When constructing IOS one has to verify that a structure satisfies certain
axioms. While the axioms of OS are verified more or less directly, it is not
convenient to do so with the g-axiom. Fortunately, there are simple sufficient
conditions which ensure iterativeness. Several such conditions are studied in
this chapter, including the case of spaces with t-operations.

We start with two p-Induction Theorems asserting the existence of least
fixed points with nice properties. These theorems originate from a well known
fixed point result of Tarski [1955] and its continuous version in Kleene
[1952], and also generalize corresponding theorems of Skordev [1980] by
involving types.

Assume that a partially ordered set &, a type set 7 and a type function
t:F — 7 are given.

Proposition 18.1. For all aeZ suppose that all the well ordered subsets of
# , have least upper bounds in % which are in & ,. Let 1% —.% be mono-
tonic and normal. Then I" has a fixed point which is a member of all subsets
& of # which are closed under I' and such that & nZ , is closed under least
upper bounds of well ordered subsets for all ae7". In particular, the fixed
point concerned is exactly pf.I(f).

Proof. There is an aed such that I'(# ) = #,. We construct by transfinite
induction an increasing sequence {6,} in #, such that 0, =sup {I'(0,)/n < ¢}
for all &

Suppose that for all § < £ a 8, has been constructed such that {0},
is increasing. Then {6,},.. is an increasing sequence in %, hence so
is {I'(0,)/n <&} since T is monotonic and I'(¥#,) = #F,. Therefore, 6, =
sup {I'(6,)/n < &} exists and is in &, Certainly, the sequence {0,},.. is
increasing, which completes the induction step.

Notice that if 6, =0,, ,, then 0,=0, for all {>{. And such a { actually
exists since #, =6, , whenever Card ({)> Card (¥ ). The element 0, is the
required fixed point of I'. In fact

T(6) = sup {T(0,)/n < T} =0, =0

In order to show that 6,&&, we prove by transfinite induction that 8.€¢& for
all &

134
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Suppose that 6,eé for all n < & Then I'(6,)eé for all n < ¢ since & is closed
under I, hence {I'(8,)/n < ¢} is a well ordered subset of & n %, which implies
0,eé.

gFinally, let T'(r) < 7. Then the set & = {6/0 < 7} is closed both under I' and
under least upper bounds, hence 0,€6. Therefore, 0, = u6.T(6) and the proof
is complete.

Instead of well ordered sets one may use in the formulation of 18.1 totally
ordered sets, increasing transfinite sequences and the like.

Least fixed points 0, are obtained at level { <w in the continuous case
considered below.

Proposition 18.2. Let % have a least member O and suppose that for all
a7 all the chains in %, have least upper bounds in # which are in .
Let I':% —.% be 7 -continuous and normal. Then I" has a fixed point which
is a member of all subsets & of % closed under I" and such that Oeé and
& N , is closed under least upper bounds of chains for all ae#". The least
fixed point in question is exactly uf.['(8).

Proof. Thereisan as.Z such that Oe# ,and I['(#,) € % ,. Take 8, = T"(0)
for all n. Tt follows that @, < 8,, while 6, <8, ., implies

8n+l = r(Hn] < r(9u+ 1] = '93+2

by the monotonicity of I'; hence {6,} is a chain. Moreover, 8,€#, and
0,e# , implies 0, . ,€#,. Therefore, {8,} is a chain in &, hence 6 = sup, 0,
exists and is in % . The element o is the required fixed point of I'. Actually,

['(o)= I“(supﬁ',,) =supI'(0,)=supb,.,=0c

by the 4 -continuity of I'. Moreover, f,e& for all n since 0, =0eé and &
is closed under T'. Therefore, ¢ = sup, 8,e&.

Let I'(tr) < 7. Taking & ={0/0 <z}, we get o <7, hence o= ub.I'(f). The
proof is complete.

Assume that an OS & =(%,I,11, L,R) with a type set 4 and a type
function t: % — & are given. Bearing in mind the above fixed point theorems
and the p-axioms of chapter 5, we introduce the following conditions intended
to ensure iterativeness.

(*) The operations , IT preserve types. If ac.7 and # is a well ordered
subset of %, then there is a pe#, such that @y = sup (#yY) for
all .

(**)  The operations ¢, Il preserve types. Whenever ae.7 and 4 is a well
ordered subset of % ,, then there is a ¢ €%, such that Lo = sup L3,
R =sup R# and o = sup () for all .

(#*%)  The operations ¢,II preserve types. If ae 7 and {¢,} is a chain in # ,,
then there is a @e% , such that @y = sup, (@), w¢ =sup, Yo, for
all ¥ and (I, ) = sup,(I, ,). There is an element O such that O <
and Oy =0 for all y.
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In view of the remark following 16.7 we may assume without loss of
generality that ¢(I), t(L), t(R), t{(O) < a for all a.

The following frequently used sufficient conditions are particular instances
of the above ones, with 7 a singleton.

(#)o If # is a well ordered subset of %, then there is a ¢ such that
oy = sup(H#Y) for all Y.

(%x%)g If 3 is a well ordered subset of %, then there is a ¢ such that
L@ =sup L#, Rp =sup R3# and @y = sup () for all .

(#xx)g  If {@,} is a chain in Z, then there is a ¢ such that ¢y = sup,(¢¥),
W = sup, Yo, for all y and (1, ¢) = sup, (I, ¢,). There is an element
O such that O <y and Oy = O for all .

If & satisfies condition () for certain 7, ¢, we shall say also that & is
(*)-complete, and similarly for (#x) etc. The spaces of examples 3.1, 4.3, 4.7,
4.8 are (#*),, (#*x),-complete, while that of example 3.2 is (**),-complete
but not (##%),-complete.

Proposition 18.3. Let &, 7 satisfy (#x), acZ and let # be a well ordered
subset of # . Then there is a %, such that @y = sup («#y) for all a2,
WeF,

This is immediate.

Proposition 18.4. Let &, 7 satisfy (##«). Then the operations ¢, I1 are .7 -
continuous.
Proof. Suppose that ae ", {@,}, {i,} are chains in #, and ¢ =sup, e,

Y =sup,y,.
Tt follows that @, < @y for all n. Let 7e.# and ¢, < 7 for all n. Then
Ol < @il < 7 for all m = n, hence @, < t for all n by (##*), which implies

@ <1 by (#**). Therefore, @y = sup, @V,
Since {¢,L}, {(I,p,L)} are chains in &, condition (#**) implies

(L, R) = (R,RL)(I, L) = A(L Sup((ﬂ"L)) = Asup(l, ¢,L)

= sup A(l, p,L) = sup(@,L, R).

Also {(¢,L, R)},{(I,¥,)} are chains in %, hence
((pe (1&) = ((PL, R)(L ’»b) = SUP((Pan .R)Sl.lp(.{, 'ﬁn) : SU-P(%Ls R}(I! wu]
i Sup ((pﬂ‘ wn}'

The proofl is complete.

Proposition 18.5. Let %, .7 satisfy condition () (condition (=%)). Then
& =(F,I1,A0.L0,A0.RO) is a 7 -CPS (7 -SCPS respectively).

Proof. &, is a pairing space by 16.2. It is .7 -complete (strongly 7 -
complete) by (*) (respectively, by (#x)).
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Proposition 18.6. Let %, 7 satisfy (##=x) and let &, be the same as in the
previous statement. Then %, is a 7 -CCPS.

Proof. The pairing space ., is continuously 7 -complete by (##+#) and 18.4.

Proposition 18.7. Let &, 7 satisfy (%) or (##x). Then all inductive mappings
over # preserve types.

Proof. Assume that &, 7 satisfy ().

The mappings A6,...0,.6;, 1 <i<n and 46,...0,.¢,ye{l,L,R} preserve
types, of course.

IfT,,T,:#"— F preserve types, then so do

=10,...0,.T,0,...,0)T50,,....0,)
and
I'= "161 ’ "Un'[rl(gis o 58n}1 rz(ﬁis-- ) Hn]}

since ¢, IT preserve types.
Suppose that I',:#" ! - # preserves types and

r= J““““:?l"‘0:1'Al-uq'-l-'ll’g‘.l.a' . vgm 0)‘

Let 8,,...,0,e#, and T* = 10.T",(0,,...,0,,0). Then I'* is monotonic and
normal and I'*(#,) < # . If {0,} is the sequence assigned to I'* in the proof
of 18.1, then 8,e.# , for all £, hence pufl.I'*(0)e # ,. Therefore, I preserves types.

If &, 7 satisly (#=+=), then we make use of 18.2 instead of 18.1. The proof is
complete.

Proposition 18.8. If &7, 7 satisfy (##x), then all inductive mappings are 7 -
continuous.

Proof. Taking 184 into account, it suffices to show that whenever
I:F"* 15 is inductive and 7 -continuous, then =14, ...6,.u68.T,(8,,...,
6,,60) is 7 -continuous.

Let ac7, {@; .} be a chain in #, and @; =sup,; , for all i,1<i<n.
Then the mapping I' is monotonic and preserves types by 18.7, hence
{T(@y. s s Pum) Im 18 @ chain in F,. Therefore, o =sup, (@ y. - @y )
exists by (=xx). It follows that I'(@ ..., @pm) < [(@y,...5 @,) for all m; hence
g<T(¢n....q,). On the other hand, the 7 -continuity of I", implies

FI(('DI!'“B(pm 0’)

= rl(sup D@1 SUP @y . SUD r((Pl,me- . -,@n,m))
m m m

= Suprl((phm!'- '!(pn.mv r(qgl‘m" " "J‘Pn.m))

m

= sup r(@l,m!--'a (Pn.m) =0,

hence I'(¢p;....,@,) < . Therefore, ['(¢,,...,®,) = ¢, hence I" is 7 -continuous.
The proof is complete.
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Proposition 18.9. Let &, .7 satisfy (*), let & be a normal segment and let ae 7.
Then & %, is closed under least upper bounds of well ordered subsets.
Proof. Suppose that .27 = #2,

&={0/0y <t forall {y,t)esl}

and # is a well ordered subset of &%, Then 8y <t for all fes#,
(i, tyess, hence (sup &/ W <t for all {Y,tres/ by (+), ie. sup Hed.

Proposition 18.10, Let &, 7 satisfy (=), let & be a regular segment and let
aeZ .Then & N F ,is closed under least upper bounds of well ordered subsets.
The proof follows that of 18.9, using 18.3.

Proposition 18.11, Let &, 7 satisly (¥*x), let & be a regular segment and let
ac7. Then OeénF, and £nF, is closed under least upper bounds of
chains.

Prool. Suppose that &/ €2 X F?2,

& ={0/uby <t forall (o, ¥, Ty}

and {@,} is chain in § "% ,. Then o <t for all n and all {o,y,7)es,
hence a(sup, @,V < 1 for all e, ¥, T y €7 by (#%x),i.e. sup,p,e4. The proof of
6.5 implies Oeé. This completes the proof.

Now we are ready to show that each of the above conditions implies
iterativeness.

Proposition 18.12. If % is (x)-complete, then it is uA,-iterative.

Proof. Let ':#""!1 = & be inductiveand #,...,0,e%. Then the mapping
[*=10.1"0,,...,0,,0) is monotonic and normal since I" preserves types by
18.7. It follows from 18.1, 18.9 that puf.T*(0) exists and is a member of all
normal segments closed under I'*. Therefore, the axiom pA, holds, which
completes the proof.

Proposition 18.13, If & is (=)-complete, then it is pA j-iterative.
The proof follows that of 18.12, making use of 18.10 instead of 18.9.

Proposition 18.14. If & is (x=x)-complete, then it is pA,-iterative.

Proof. Let % ""! 5 & be inductiveand 0,...,0,e %#. Then the mapping
' =16.1(0,,...,0,,0)is 7 -continuous by 18.8 and normal by 18.7. It follows
from 18.2, 18.11 that uf.I'*(6) exists and is a member of all regular segments
closed under I'*. The proof is complete.

The next five statements make it possible to transfer iterativeness from a
given space to a related one; the last three of them are analogues to certain
assertions of Skordev [1980].

Proposition 18.15. Let % be an OS, %, be a subspace and suppose that
.7 satisfy condition (#) (condition (#=%)). Let %, be closed under least
upper bounds of well ordered subsets of %, , for all ac7. Then &, 7
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satisfy () (respectively, (*=)) with a type function ¢ [.% |, and & is a subspace
of & as an 10S.
This follows immediately.

Proposition 18,16, Let % be an OS, let &, be a subspace and suppose that
P, satisfy (#++). Let 0%, and let & ; be closed under least upper bounds
of chains in &, , for all aeZ. Then &, 7 satisfy (###) and & is a subspace
of % as an 108,

This follows immediately.

Proposition 18.17. Let &, 7 satisfy (*) and let .%°, be obtained from & by
introducing a new partial order < ; such that whenever ae.7, 5 is a subset
of #, well ordered with respect to < and ¢ =sup# with respect to <,
then @ = sup # with respect to < ;. Then &, is pA,-iterative and ¥, &, have
identical operations ¢ >, [ 1

Proof. Notions related to the partial order < | will be subscripted, e.g. sup;,,
segment,, u, 0.1°(0) etc.

Let us prove first that whenever I':% — % is monotonic and normal, then
18.7(0) is a member of all normal segments, closed under I'. Given such a

segment,
&=1{0/0y <t forall {y,tdesd},

o < F2, take the sequence {0, } assigned to I by the proof of 18.1. It suffices
to show that 0,eé for all £.

Suppose that 8,ed for all n<¢. Then I'(9,)e& for all n<¢, hence
(0¥ <t forall n < & and all {if,7>es/. We get ) =sup{I'(0,)0/n <&}
by (), hence 0./ =sup,{I'(6,)y/n<<&}, which implies 0./ <,z for all
{Y,tryed, ie. 0.8, Therefore, 0.€& for all £, hence pf.I'(0)eé.

If ['(7) < ;. then pB.I'(B)eé = {6/0 < t}. Therefore, i, 0.T(F) = ub.I'(0),
and an inductive argument on the construction shows that a mapping is
inductive, iff it is inductive. Taking 18.7 into account, we conclude that & is
UA s-iterative. This completes the proof.

Notice that whenever ¢ <, then ¢ <, since ¢ = sup{op, ¥}.

Proposition 18.18. Let &, satisfy (»x) and let %, &, be related as in the
previous statement. Then %, is pAj-iterative and &, , have identical

operations { >,[ 1.
The proof follows that of 18.17.

Propositon 18.19. Let &, 7 satisfy (#*x) and let %, be obtained from &
by introducing a new partial order <, such that whenever ae7,{g,} is a
chain in %, and ¢ = sup,®,, then ¢ =sup,,®, Then &, is uA,-iterative
and &, %, have identical operations { >, [ 1.

Proof. Following the proof of 18.17, we show first that whenever I':.% — %
is 7 -continuous and normal, then pf.T'(#) is a member of all regular
segments, & closed under I'; we have Oé& since ¢ <) always implies ¢ < .
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Then we show that the inductive, mappings are exactly the inductive ones,
which will complete the proof by 18.7, 18.8.

Assume that { » is a t-operation over % in the sense of chapter 10.
(Mappings X,, X, satisfying the equalities (2), (3) of chapter 10 need not be
assumed to be given since their existence will follow by 10.9%, 10.10¥.) The
following sufficient conditions are designed to ensure that &, { ) satisfy
a tu-axion. Namely, take (1=) (respectively, (t**)) to be condition (*) (condition
(%)) plus the additional assumption that { ) preserves types and is con-
tinuous with respect to least upper bounds of well ordered subsets of %, for
all a. Take (t*##) to be (**x) plus the additional assumption that { }»
preserves types and is . -continuous, and (0) = 0. (Notice that (t=), (t#)
impose heavier constraints on the operation { ) than (t*x#) does.)

The spaces and t-operations of exercise 10.1 satisfy both (ts=),, (t#ssk),,
where the subscripts indicate that 7 is a singleton.

Proposition 18.20. If &.{ },7 satisfy condition (t%) (condition (t=#)), then
.4 ) satisfy axiom tpA, (respectively, tpA,).

Proof. % is uA,-iterative by 18.12 (respectively, pA,-iterative by 18.13).
All t-inductive mappings are monotonic and preserve types. All t-simple
segments satisfy the property established in 18.9. Therefore, 7, { ) satisfy
axiom tuA by 18.1. The proof is complete.

It often happens that all t-simple segments are normal by 10.18. Then one
need not bother to verify that { )} is continuous with respect to least upper
bounds of well ordered subsets of %, all a.

Proposition 18.21. Let .%, 7 satisfy condition (*) (condition (=#)), let { } be
monotonic and preserve types and let all the t-simple segments be normal
(respectively regular). Then #,{ ) satisfy axiom tuA,(tpuAa).

Proof. &% is pA.-iterative by 18.12 (uAs-iterative by 18.13). All t-inductive
mappings are monotonic and preserve types; hence the validity of tuA follows
by 18.9 (18.10) and 18.1.

Proposition 18.22. If &,{ »,7 satisfy (t==x), then &, { )} satisfy the axiom
LA 5.

This follows from 18.2 since all t-inductive mappings preserve types and
are 7 -continuous in this case, while all t-simple initial segments satisfy the
property of 18.11.

t-Analogues to 18.15-18.19 can be established as well.

EXERCISES TO CHAPTER 18

Exercise 18.1. Let (L,R) <[ hold in &. Show that II is continuous with
respect to least upper bounds of nonempty subsets of #. In particular, the
requirement (I, @) = sup, (I, ¢,) in (#++*) could be dropped.

Hint. Use 16.2 and exercise 16.3.
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Exercise 18.2. Let (L, R)> 1 hold in . Show that whenever # < # and
@ = sup#, then Lo = sup L# and Re =sup R#. In particular, () and ()
will be equivalent.

Hint. Use 16.2 and exercise 16.4.

The equality (L,R)=1I is valid in examples 3.1, 3.2, while (L,R)<I in
example 4.3. As far as examples 4.7, 4.8 are concerned, everything depends
on the splitting scheme.

Exercise 18.3. Let & be (x)-complete ((*)-complete, (##*)-complete). Show
that %, = (%, I,I1} #2, L, R)is a (#)y-complete (respectively, (xx)o-complete,
(##%),-complete) OS for all ae 7.

Exercise 18.4. Let # be (#)-complete and TI 7 -continuous. Observing that
A, )= ub.(p, 0) by 6.33, show that this least fixed point is reached at
level @ and A is 4 -continuous in its first argument. In particular, { )
is  -continuous,

Hint. Show that the mapping A@0.(¢,0) is F -continuous, then use
the proofs of 18.2, 18.7, 18.8.

Exercise 18.5. Let & be (»#x),-complete or & be (#),-complete and II
continuous. Prove that % admits a continuous collection operation.
Assuming that &, is obtained from . by modifying its partial order, show
that &, also admits a collection operation.

Hint. % satisfies condition (c%) of exercise 11.1. The same operation
Co does for 7.

Exercise 18.6. Let & be an OS, &, a subspace, let & be (##%)-complete and
suppose that %, be closed under ¢ ).[ 1. Prove that &, is pAs-iterative
and is a subspace of % as an 10S.

Hint. Show first that uA , holds for mappings I':.% ; —.# ; recursive in # |,
observing that p,0.T(8) = sup,I™(0). Thus we obtain a First Recursion
Theorem for &,, which in turn implies that uA; holds for arbitrary
inductive mappings.

A version of the last exercise for spaces with t-operations can also be given.

Exercise 18.7. Let ( ) be a storing operation which preserves types.
Show that in order to ensure the validity of the stronger axiom tuA of exercise
10.9 it suffices to require in () and (x*) that x¢ = sup x# for all xe.#, while
condition (t###) needs no amendments.

Exercise 18.8. Construct a 5-tuple % to meet uA, and all the axioms of OS
but Az.

Hint. Take & to be a (##),-complete OS with a pairing scheme modified as
suggested by the hint to excrcise 4.3. Then & will be (##)g-complete, hence
1A s-iterative since the proof of 18.13 makes no use of A,.
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Exercise 18.9. Construct a 5-tuple & to meet A, and all the axioms of
OS but A;.

Hint. Take & to be a (*+#),-complete OS with a pairing scheme modified
as in the hint to exercise 4.3. The new pairing operation Apy. ¢ is continuous,
hence & is pA,-iterative by the proof of 18.14.

While the OS of example 4.2 satisfies (£) but not (££), the following exercise
shows that (£) is also independent.

Exercise 18.10. Construct an OS to satisfy (££) but not (£).

Hint. Take a pA;-iterative OS & in which {I) =1, then take #, = {@/¢p
is prime recursive}. The OS &, =(#,L,LII| #},L, R) satisfies (££) since
F isclosed under [ . Assuming that the operation { >, over &, satisfies
(£), get {R>={R> e, contrary to exercise 6.14***




CHAPTER 19

Constructing operative spaces

This chapter presents several standard constructions which produce OS from
pairing spaces or partially ordered semigroups. In particular, consecutive
spaces will be constructed.

Often a pairing space can be augmented with multiplication to become
an OS.

Proposition 19.1. Let # = (#,11, L, R') be a pairing space, let o Fr 5 F be
monotonic and associative and let [e# be a unit such that L' = 160.L(I)6,
R’ = 10.R'(I)6. Let © be right distributive with respect to II, ie. (@ )y =
(@y.Wy) for all @,¢,z. Then &y =(F,LIL L), R'(I)) is an OS.

This follows from the relevant definitions.

Of course, the above statement gives no general construction since multi-
plication can sometimes be introduced in various ways. Once such an
operation is singled out, 19.1 just says what has to be verified in order to
that the structure at hand be an OS.

Proposition 19.2. Let &, %, be the same as in 19.1 and let & be 7 -complete
(strongly 7 -complete). Let o preserve types and suppose that whenever
acd, # is a well ordered subset of #, and ¢ =sup # in &, then
oy = sup (#) for all Y. Then &, is ()-complete ((#*)-complete).

This follows from the corresponding definitions.

Proposition 19.3. Let %, %, be the same as in 19.1 and let & be continuously
F -complete. Let  preserve types and be 7 -continuous and suppose that
O satisfies the equality Oy = O for all . Then &, is (##x)-complete.

This follows from the corresponding definitions.

On the other hand, TOS can be obtained by augmenting certain partially
ordered semigroups with pairing schemes.

Proposition 19.4. Let # be a partially ordered semigroup with a unit I and
suppose that every subset # of # has a least upper bound ¢ such that
oy =sup(#y) and Yo =supy# for all Y. Let L,L,RRe#, LL, =
RR,=1I and LR, =RL,=0, where O=sup. Take (o, ) =sup{L,p,
R,y). Then & =(#,LI1,L,R) is a (=), (#x)-complete OS.

Proof. Suppose that f < #, #,<F, ¢ =supA#’, and Y = sup #,.
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Then

(o, }—Sup{ 10, R }
=sup{sup{L, 9/9&3‘?’} sup{R,1/1e#,} |
=sup{sup{L,0, R t}/0eH &reH )
=sup{(0,7)/0e#  &1e#,};

hence IT is continuous with respect to least upper bounds of nonempty sets.
In particular, IT is continuous and certainly monotonic. It follows that

(. Y)W =sup{L, o, R,y }x=sup{L,ox Ry} = (o1 Y1)
L{g,¥)=Lsup{L,¢,Ry} =sup{LL,¢, LR} =sup{ep,0} = o,
R(p, ) =sup{RL,@,RR ¥} = ¥;

hence & is a (s*),-complete OS. Morcover, O <y and O =(sup &f)°
W =sup @ =0 for all i, hence & is also (x#*)y-complete. The proof is
complete.

Notice that in this space we have also YO = O for all ..

Proposition 19.5. (A typed version of 19.4) Let # be a partially ordered
semigroup with unit I such that » preserves types and whenever aeZ,
# < F , there exists a pe# , such that oy = sup (), Yo =supy# for all
w.Let L, L, R, R,, I be as in 19.4. Then & = (%, 1,11, L, R) is a (%), (++*)-
complete OS.

The proof repeats that of 19.4. If # = # is finite, # = %, for a certain
a; hence sup # exists. Therefore, the operation IT is correctly introduced.

It is worth mentioning that the construction of 19.4, 19.5 applies equally
well to the dual semigroup (Z, oy .y¢).

Proposition 19.6. Let & be constructed by 19.4 or 19.5. Then {¢)>=
sup,R1L@LR", Alg,¥)=sup,R1L;oy" and [¢]=sup,(R,@)'L,. The
element U =sup{L, R} satisfies condition (1) of exercise 7.10. The above
characterizations of ¢ >, A, [ ] take place for all iterative subspaces of &.
Proof. Proposition 6.33 gives by the proof of 18.2 that A(¢p,y)=—sup,d,,
where 8, =0, 0, , = (¢, 8,). Supposing 0, = sup,.,Ri L@y, one gets

Ops1=sup{L @, R,0,0} = EUPIR Loy,
hence 8, = sup;.,R: L, oy’ for all n. Therefore, A(p, ) =sup,RiL,ey". In
particular, (¢ > =sup,R}L, pLR" by 6.32.

It follows similarly that [¢] = sup,@,, where 0,=0 and 0,. =(I, ¢8,).
One gets by induction that 6, =sup;.,(R,@)'L, for all n, hence [¢]=
sup,(R,¢)"L,.

The element U satisfies condition (2) of exercise 7.10 since Uy =
psup{L, R} =sup{pLy, @Ry} for all @,y

Suppose that &, =(# ,, ,LI1[ %1, L, R) is an iterative subspace of &. Then
L,,R,e#, since L,=sup{L;,R,0}=([,0) and R,=(0,I). Therefore, the
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expressions for { »,A,[ ] obtained above still make sense. The proof
is complete.
The following construction modifies that of 16.5.

Proposition 19.7. Let & = (%11, L, R') be a pairing space (continuous pairing
space). Take F' = {¢'/¢':F — % &' is monotonic (continuous)}, I' = 0.4,
@ <y iff Y@@ <y(0), ¢y =10.9/W(®) and TI(¢,y)=i6.(¢'(6),
V'(@)). Then &' =(#',I',IT, L,R’) is an OS.

Proof. If ', i)', then @'y’ e #' since composition of mappings preserves
monotonicity (continuity). It follows from the proof of 12.1 that #' is a
partially ordered semigroup with unit I'. The monotonicity (respectively
continuity) of I, R’ implies L,R'eZ". If ¢',/'eF’, then (¢',y)eF" by the
monotonicity (continuity) of IT. Moreover, TI" is monotonic since I1 is. The
distributive law is verified as in 12.1, while

L(g',y") = 20.L((¢'(6). ¥'(8))) = 20.9'(0) = ¢’

and similarly R'(¢’,") =y’; hence & is an OS. The proof is complete.
Notice that in the continuous version the operation multiplication and
pairing of &' are continuous as well.
The following statement reaffirms the construction of 12.1.

Proposition 19.8. Let ¥ =(%#,I,I1,L,R) be an OSand &' =(F".I'II"', L,R’)
be obtained from the pairing space (#,II,L,R) by means of 19.7. Then
&, %" are consecutive OS.

Proof. We recall that ¢ = 20.¢#0, Id = 8.1 and M!= A0.LORO. It follows
that # =.#' and Id, Mle #"; hence the spaces &, are consecutive.

The following statement modifies 16.11.

Propesition 19.9. Let & = (#,I1,L,R) bea 7-CPS (7 -SCPS), #' = {¢'[¢":
F — F & @' is monotonic and normal}, I', <,°,IT' beintroduced as in 19.7 and
g7t the same as in 16.11. Then %' = (%", I, I, L,R) is an OS and &', 7"
satisfy () (respectively (x%)). In particular, if & is a CPS (SCPS), then #~
consists of all the monotonic unary mappings over % and %" is (#),-complete
((=#)4-complete).

Proof. Suppose that ¢, ¥'eF’, act'(¢’) and bet'(y'). Let c>a,b and
feF .. The mapping ¢ is normal and b < ¢, hence ¥'(0)e# . The mapping ¢’
is normal and a < ¢, hence @'(y'(1)eZ ., i.e. @'Y/ (0)e F .. Therefore, 'Y/ is a
monotonic and normal mapping, hence ¢'yy'e# . Whenever ¢',y'eF ,, then
the above argument gives a’' < t'(p'y'), hence @'y'eF,.. We conclude that
the multiplication of ' preserves types. It follows similarly that " is closed
under IT" and IT" preserves types, using the fact that IT preserves types.

It is immediate that I’ preserves types. Observing that L, R’ preserve types,
we get

t(I=t(L)=t'(R)=5 <d
for all a'e.7". In particular, I', L, R" are monotonic and normal, hence I', L,
R'e#'. Using 19.7, it follows that & is an OS,
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Let a'e 7" and # be a well ordered subset of # ... Then we take o' = A6.
sup {0/(0)/@"e#"} as in the proof of 16.11 and show that ¢ is monotonic
and normal and also @' = ¢'(¢'), hence ©'eF .. It follows that

@ W'(0) = @' (' (6)) = sup {6'('(0))/ 6 e "} = sup {6/ (0)/0' e #"}

for all /', 8, hence 'y’ =sup(#”y’') for all Y. Therefore, &, 7 satisfy (x).
Suppose that & is strongly Z -complete. Then

L¢'(6) = L(¢'(6) = L(sup {6'(6)/6' e #'}) = sup {L(0'(0))/0' e #"}
= sup {L0'(0)/0 e #")

for all 6, hence L'¢’'=supL#". Similarly, R'¢’=supR’#", hence &', 7'
satisfy (#x). The proof is complete.

Proposition 19.10. Let . =(#,II,L,R’) be a 7-CCPS, #' = {¢'fo":F —
F &¢'is 7 -continuous and normal}, I', <,,I1"be asin 19.7 and 7, ' those
of 16.11. Then &' =(#",I',IT,L’,R’) is an OS and &', 7" satisfy (###), In
particular, #' consists of all continuous unary mappings over % and %' is
(##=%),-complete, provided & is a CCPS.

Proof. Suppose that ¢',y'e#',ae7,{¢,}isachainin &, and ¢ = sup, @,.
The mapping ¥’ is 7 -continuous; hence /() = sup, ¥ (@,). Let bet' (') and
¢=a,b. Then {¥'(¢,)} is a chain in .7, since b < ¢ and ¢,e#Z, for all n. The
mapping @' is 7 -continuous; hence ¢'(if'(¢)) = sup,p'(¥'(¢,)), ie. ¢'¥'(0) =
sup, @'y'(¢,). Therefore @'y’ is a 7 -continuous mapping. The proof of 19.9
implies that ¢y’ is normal, hence ¢'ty'e#’. The proof of 19.9 implies also
that the multiplication of #" preserves types. It follows similarly that #' is
closed under I1" and IT" preserves types on account of the fact that IT is
Z -continuous and preserves types.

The mappings [, I/, R" are 7 -continuous and preserve types, hence I, L,
R'e# and t'(IN, t'(L), t'(R") < a' for all a'e 7. Using 19.7, it follows that & is
an OS.

Suppose that a'e 7" and {¢,} is a chain in # .. Let e #, aea’ and b > aq,
t(f). It follows that @,e#; hence aet'(¢)) and @(@)eF, for all n. Therefore,
{oy(0)} is a chain in &), hence there is a t,e.#, such that 1, = sup,@.(f).
Take @' = A0.1,5. Then whenever ce 7, {¢,} is a chain in #_ and ¢ = sup, @,
we obtain from the 7 -continuity of ¢,

¢'(@) =sup @,(¢) = sup rp;(sup %) = Sup sup @,(@,,)
n n m n m
=supsup @,(@,,) = sup @'(p,,);

hence ¢’ is 7 -continuous. It is also normal and &’ < r'(¢); hence ¢’'e #,,..
Using the 7 -continuity of T, we get

(', @')(0) = (6, ¢'(0)) = (9, sup @L(ﬂ}) = sup(6, ¢(0)) =sup(l, ¢;)(6)

for all 0; hence (I, @) = sup,(I', @}).
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If y'e#’, then
@"W'(0) = @'(¥'(0)) = sup ,(¥(6)) = sup /()

for all 0, hence @'}’ = sup,(@,¥’). It follows from the 7 -continuity of ' that
V') =y (Sup CPL(HJ) = sup /' (@u(0)) = supy e, (6)

for all @; hence ¥'¢" = sup, /'@,

The mapping O’ = O is continuous and preserves types; hence 0’'e.#’ and
t'(0") < a for all @', It follows that O’ < ¢ and O'Y' = 16.0'(¥'(0)) = 40.0 = O
for all y'. Therefore, ., 7' satisfy (###), which completes the proof.

The following two statements present our standard constructions yielding
consecutive I0S. They will also be used in the next chapter to construct
hierarchies of 1OS.

Proposition 19.11. Let % be a (x)-complete ((**)-complete) OS and let &
be obtained from (#,T1, L, R) by 19.9. Then %, %' are consecutive 10S.

Proof. (#,I1,L,R) is a -CPS (7-SCPS) by 18.5, hence 19.9 may be
applied. The spaces &, &' are uA ,-iterative by 18.12 (respectively, pA ;-iterative
by 18.13). All @ are monotonic and normal and so are /d, MI; hence # = 7',
Id, MleZ'. Therefore &, %' are consecutive OS. In order to show that they
are consecutive 108 it suffices to show that ¢(I) =<I'}. As mentioned in
chapter 12 however, this equality follows by the uA,-iterativeness of . The
proof is complete.

Proposition 19.12, Let & be (*#*)-complete and let & be obtained from
(#,11,L,R) by 19.10. Then &, &' are consecutive 10S.

Proof. (#,II,L,R) is a Z-CCPS by 18.6. Both %, %" are uA;-iterative by
18.14. The mappings @, Id, M! are & -continuous and normal, hence # = #',
Id, Mle #’, which implies that %, &' are consecutive OS. The equality {I') =
¢I'> also holds, hence &, %" are consecutive IOS, The proof is complete.

Proposition 19.13. Let %’ be obtained from & by 19.11. Then the monotonic
mappings Q, of chapter 13 are members of #’ and so are the mappings Q, ,,
provided L and R have an upper bound U.

This follows immediately, from the normality of these mappings.

If & is obtained from & by 19.12 however, one should not expect that
Q,,Q, ,eF forarbitrary o, %. A counterexample will be given in the exercises.
This indicates that the monotonic version is richer and perhaps, more
interesting, than the continuous one.

The following statement shows that consecutive spaces constructed by
19.11 admit transfers.

Proposition 19.14. Let &, 7 satisfy condition () (condition (x+)), let &', 7"
be obtained from %, 9 by 19.11 and let &%, 7" be obtained from &, 7' by
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19.11 again. Then
Tf = Lo".20'.20.0"(0'(LE, I'))(R6)

is a correctly introduced operation over # " and the axiom tfuA , (respectively,
tfpA ;) is valid. If % is obtained from %" by 19.11, then TfeF".

Proof. Suppose that p"eF",0'eF . a'et"(¢") and b’ >da',t'(0). Let beb'
and 0eZ,. Then t'(0) <b = {a/b < a} and t(#") < b’ < b; hence (L0, INe F It
follows that ¢"(#'(L0,I'))eF } since a’ <b. Noting that RfeF, and beb,
we get @"(8'(L', I'))(RO)e F ,. Therefore, the monotonic mapping T/ (¢")(€') =
A0 (@'(L'E, I'))(RO) is normal, and hence in %",

Suppose that ¢"e#" and a'ct”(¢”). If #'c #",, then the above argument
gives t'(Tf(e")(0)) <a, ie. Tf(p")(0)eF,. Therefore, the monotonic
mapping Tf(e") over %' is normal; hence Tf(p")e.#". We conclude that
Tf.#"—->%". Moreover, we get Tf(F.)=#_. for all a”, hence Tf
preserves types. Propositions 10.18, 18.21 ensure that .%", Tf satisfy tfuA,
(respectively tfuA,).

Finally, if %" is obtained from %" by 19.11, then Tfe#" since T/ is
monotonic and normal. This completes the proof.

One last remark. In order to consider the transfer operation over %", the
space .% need not be an OS. It suffices to assume % a pairing space and
replace throughout chapter 14 L8, Rt/ by L(#), R'(6).

EXERCISES TO CHAPTER 19

Exercise 19.1. Let % =(#, 1,11, L, R) be an OS with a least element O such
that Oy =0 for all Y. Take F' = {@'/Tc @' S F}, ¢ <V iff Voeg'3pe
Vie<y), oV ={oyloce &¥ey}, (¢ W)=, y), I'={I}, L ={L}
and R'={R}. Show that &' =(F". I',IT',Ll,R’) is a (xx),, (¥*x),-complete
OS and the element U’ = {L, R} satisfies condition (1) of exercise 7.10. Give
explicit characterizations of the operations { >, A, [ ] of &.

Hint. Use exercise 16.1 and propositions 19.1-19.3.

Remarks. The necessity of factorization can be avoided by modifying #’
as suggested in the remarks to exercise 16.1. The advantages and drawbacks
of this construction are the same as in the case of pairing spaces. One always
gets an iterative space, even if the given one is not; e.g. the subspace of an
arbitrary 10S consisting of all elements polynomial in O,/ is not iterative
by exercise 6.14***, The given OS .% is isomorphic with the subspace of %
based on {{¢}/eeZ}. If, however, & is iterative, this isomorphism may fail
to agree with the operations { »,[ ] of & and &

Exercise 19.2. Let N be a nonempty set and % be an 10S for all se N. Take
F = X onFo @<y ifl Vslo(s) < Y(s)), oy = As.@(s)(s), (@, ¥) = As.TL{¢(s),
Ul(s)), I =As. 1, L= As.L,and R = As.R,. Show that . =(#,[,II,L,R) is an
108 and whenever ., 7, satisfy one of (%), (#x), (**=) for all s, then &, 7
satisfy the same condition, where 7 is the type set of exercise 16.2.

Exercise 19.3. Let & be an 108, #“ a set and *: % —.#" a bijection. Take
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@Y <YV iff o < ¢, @~ Y~ =(py)" etc. Show that & = (¥, IV,T1%, L", R")
is an [0S isomorphic with %,

Remarks. Italso follows that t-operations over # are transformed by “ into
t-operations over #“ ctc. Despite its seeming triviality this construction has
interesting applications, for if % =%, then the operation “ need not
necessarily be expressible by the initial I0S-operations of &.

Exercise 19.4. Let % be the 10S of example 4.8, #~ =% ¢ = ¢ ' = {(1,5)/
(s, t)e} for all @, and &~ be obtained from & by exercise 19.3. Prove that
o<V iff o<y, e ¥ =yo, M@y =¢LUYR, ¢ >*={ > and
[ 14@)=UaL(oRY

Hint. Use exercise 5.2 and the equalities L = L,, R =R;.

Another natural bijection in the above example is " = 7o = M*\o.

The following exercise shows that the axiom pA, does not imply pA;.

Exercise 19.5. Let & be the CPS of exercise 16.7 and let the OS &' be
obtained from it by 19.9. Prove that & satisfies (*), but not uA,.

Hint. Take p'(0)(3s), p’(0)(3s + 2) = 0(3s) and p'(8)(3s + 1) = 6(3s + 1). Then
p'e#F and whenever Dom i < w, then L(p'((p.¥))) = .

Consider the mapping i6'.p'(I',6") and the regular segment &' = {0’/
L6 <I'}. Suppose that @'eé”’ and 0eF.

If Dom 8'(6) < e, then L(p'((8, 0'(9)))) = 6.

If Dom 8'(6) = w, then L(9'(6)) = w? and L'#" < I' implies L'(0'(6)) < 6; hence
6 = w?. Therefore, L(p'((0, 0'(0)))) < 6. We get L'p'(I',6')(6) < 8 for all 8, hence
&' is closed under A0'.p'(I", &)

Take o' = ul'.p'(I',#). 1t follows easily that Dom ¢’(I) = w, where I = /5.5,
hence L(e'(I)) = @* < [ =I'(I), Therefore, o'¢d”.

Exercise 19.6. Let &' be obtained from & by 19.12. Show that there are
ge such that 4,¢7".

Hint. Take @y =0, ¢,+, =1, ¢,) and o= [I]=sup,e, Show that ¢, <
¢, +1; hence @, < o and A,(p,) = O for all n, while 4,(0) = L.

Exercise 19.7. Let %", Tf be the same as in 19.14, Show that they meet the
stronger tu-axiom of exercise 10.9.
Hint. Use exercise 18.7.

Exercise 19.8. Let .%°, 7 satisfy (##%), let &', 7' be obtained from &, by
19.12 and let %", 7" be obtained from .%”,.7" again by 19.12. Prove that
5" admits the operation Tf and ", Tf satisfy tfuA, and the stronger axiom
of exercise 10.9. Assuming that %" is obtained from &” by 19.12, show that
TfeF".

Hint. Following the proof of 19.14, show in addition that for all ¢”, 0’ the
mapping Tf(@")(6) over # is 7 -continuous, while the mapping Tf(¢") over
F' is F '-continuous. (Do not forget that ¢ is 7 -continuous and ¢" is
J-continuous.) Finally, the mapping T itselfis 7 “-continuous and preserves
types. Use 18.22 and exercise 18.7.



CHAPTER 20

Constructing hierarchies of
operative spaces

Given an OS % and a type set .7 satisfying () or (#*), we construct in this
chapter pairs .¥ ., .7, satisfying the same sufficient condition for all &, so that
{Z¢} is a monotonic hierarchy based on & and {¥,} admits transfers. If
¢=¢&; + 1, then the semigroup # . consists of all the monotonic and normal
mappings over %  , while if € is a limit, then all the preceding spaces ¥, < &
are brought together to form .%.. A continuous version of this construction
is considered in the exercises.

Proposition 20.1. Let % be (*)-complete ((*#%)-complete). Then a monotonic
~ hierarchy {%} based on . can be constructed such that F ¢ i8 (*)-complete
(respectively, (%% )-complete) for all £

Proof. The proof is by transfinite induction on & and closely follows that
of 17.2. We first construct a hierarchy of type sets {7 ,} based on 7 by 17.1.

Take ¥, =& and 1, =1.

Suppose that £>0 and for all n<¢ an OS %, and a type function
t,.#,—7 ,have been constructed such that %, 7, satisfy (*) (respectively,
(#¢)). If p=n,+1<¢ let &, be obtained from &#,, by 19.11 and identify
the subspace 7, of &, with &#,,. If n<¢ is a limit ordinal, then let #,=
\Jz<n#; and &, be a subspace of #,, whenever { <n. If el J,<«#,, then
the ordinal r(¢)=min {#/pe#,} is the rank of ¢ as usual. If y <& and
(= r(¢p) <n, then let t,(p) be represented in ., by t,(¢). This is the inductive
hypothesis.

A familiar notation. If n + 1 <, rl@) <n + 1, Y€ F, and ¢, is the member
of #,,, identified with ¢, then @), will stand for ¢,(i) as in chapter 15.
Observe that @), = @), if r(@)=n+ 1, while @), = @i, if @) <n+ 1.
Moreover, 1 €%, .1, ¢ < 1 imply @(¥), < x(¥),-

1. C:' = (:1 4 1.

Obtain ff’::,lg from &, t;, by 19.11 (i.e., by the construction of 19.9) and
identify 7, with &,,. This can be done since the I0S ¥ ., & are isomorphic
by 12.24.

If pe # ; and { = r(p) < &, then the argument adduced at the corresponding
point of the proof of 17.2 implies that t:(¢) represents t.(¢) in 7 ;. Therefore,
the induction clause holds for £.

150
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2. ¢ is a limit ordinal.

Take # .= U,,q.@',, and t{o)=({, t{e)) for peF ., where { = r(¢). The
proof of 17.1 implies that t«(¢)e 7, and t,(¢) is represented in 7, by (, t{¢)),
Le. by tdo)

If o, e F, then take @ < ill @ < b, QoY = @ogyy and (@, ) = (@, ),
where { = max {r(¢),(})}. It follows from the induction hypothesis that if
{<n<q then o< iff <,¥, posth = @b and (@, ¥): = (9. ¥),, 50 We
may write simply ¢ <y, @y,(p, ). The 5-tuple &, = (%, I, Il L, R} is an
OS since 7, is for all n <&

Our next aim is to verify that &, 7, satisfy condition (#) (condition (*#)).

Suppose that to() = (1, t,{@)) t0) = (L, t(¥)), (€1, a)€ 7 ; and t@), t(¥) <
(¢1-a). Then 1, { < &, and 1, (g), -, () represent 1,(@), t(Y) in # ¢, and t,,(¢),
te,(W)<a. It follows that r(e),r(y)<¢,, hence @,yeF ., which imples
pYeF ., and t, (o) < asince o, preserves types. If £, = r(py), then &, < ¢,
tdoy) = (£t (@) and t. (@) represents t.(@y) in 7 ,; hence tdpY) <
(1, @). Therefore, the operation °, preserves types. Similarly, I1; preserves
types.

Suppose that a = (5, b)e7 ; and #’ is a well ordered subset of #, ,. Then
t{f) <a; hence #eF, and t,(0) <b for all fes#'. Therefore, # is a well
ordered subset of %, ;. It follows from the inductive hypothesis that there
isa peF,, such that oY =sup(HY)in F, for all yeF, We get tp)<a
from condition (&) of 17.1; hence pe %, ,. To complete the proof we shall
prove by transfinite induction that ¢y =sup(#'y) in F, for all yeZ,
n<({ <& In the case of condition (*+) the equalitics Lo =sup L#, Ro =
sup R# will also be established in & .

a. Let {={, +1, n <{ << and suppose the assertion holds for {;.

It is immediate that 0 < @¥ for all fei#,yeF, On the other
hand, suppose that y,te%#, and O <.t for all fes#. If veF , then
(e¥)(o), < (), hence B°, (o), gur{a] The inductive hypothesis
1tnp11es that @<, ¥(o),, —sup(Jf’ o, Ylo),) in F , hence oo Y(o), <. (o),

e (pw)(a); b <e, t(g);,. This holds for all ce#,, hence @y <. Therefore,
(pl,bﬂsup(%q‘f in #,. '

Suppose that &, , 7, satisfy (). Let 1€7, and L0 <t for all 8. If
oe# . then(LO)(0), <, t(0);,, hence Lo < t(o);, forall @ #. The inductive
hypothesis implies Lo =sup(L#a) in .93'(” hence Loo <, t(0),,, ie.
(Lo)(o);, <¢,©(o),. This holds for all ce#,; hence Lo <,r. Therefore,
Lo =supL# in #, and similarly Rgp =sup R# in 7.

b. Let { be a limit ordinal, 7 < { < £ and suppose the assertion holds for
all 4, < (.

It is immediate that 0y <,y for all Ge#, y €7 . Suppose that }, 1e.7,
and 0y <.t for all fes’. Taking 7, = max {r(¥), r(z), 7}, we get n, <,
eF,,H=F, and O <, 1 for all e #. The inductive hypothesis gives
QoY = sup }F’w) in P hence o <,, 7. It follows that @y <, hence gy =
sup (#yY) in F .

Suppose that &, , 7", satisly (++) for all 5, <{. Let 7e# and L0 <, 7 for
all fes#’. Taking n, = max {r(z),n}, we get n, <{,L,teZ, , # =F, and

nm?
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L0 <, 7 for all fes#’. The inductive hypothesis gives Lo =sup L# in 7, ;
hence Ly <, © which implies Lo < 7. Therefore, Lo =sup L# in &, and
similarly R =sup R# in & ,. We conclude that #,, 7, satisfy () (respec-
tively, (++)), while it is immediate that &, is a subspace of #;, provided
n < & The proof is complete.

Proposition 20.2. Let & be (*)-complete ((*+)-complete) and let {&} be the
monotonic hierarchy based on ¢ constructed in 20.1. Then {%;} admits
transfers, i.e. for all £ the element Tf.,,e% . ; is a transfer operation over
F -+, satisfying the axiom tfuA, (respectively, tfuA,). The stronger axiom of
exercise 10.9 is also valid.

This follows from 19.14 and exercise 19.7.

Proposition 20.3. Let {.%;} be the hierarchy constructed by 20.1. Then for all £
there are members Q,, . (and Q, ., provided L, R have an upper bound U) of
F ¢+ which are the mappings Q, (and Q, ) corresponding to &,.

This follows from 19.13.

Suppose that & is (*)y-complete or (#x),-complete and a hierarchy {&}
based on & is constructed by 20.1. Then all &#,,n< w satisfy the same
sufficient condition and types arise beyond w, exactly as they did in hierarchies
of pairing spaces. (Cf. exercises 17.1-17.3))

EXERCISES TO CHAPTER 20

Exercise 20.1. Let .¥ be a (=**)-complete OS. Construct a monotonic
hierarchy {%,} based on &.

Hint. Follow the proof of 20.1, substituting (++*) for (%) and 19.12 for
19.11 in the induction clause.

Remarks. Hierarchies constructed this way are more appropriately called
continuous since for all £ the semigroup # .., consists of 7 -continuous
mappings over F,. Excrcise 19.8 ensures that all continuous hierarchies
admit transfers, while exercise 19.6 shows that proposition 20.3 does not
hold for continuous hierarchies.




