PART C
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on operative spaces




CHAPTER 10

Translation-like operations

An 108 & = (#, 1,11, L, R) has four initial operations, namely , [T, { 3,
[ 1. Since our intention when choosing them in chapter 2 was to get a
minimal collection, it may happen in some spaces that there exist wider
collections ofinitial operations which also support a sensible recursion theory.

On the other hand, the role played so far by the operation { ) suggests that
similar operations are ‘nice’ from the recursion theoretic viewpoint. Roughly
speaking, such a translation-like operation { ) maps # injectively into itself,
transforming =, I1, < >, [ 1,¢{ D into { )-freec operations, e.g. (@i »=
I({p)y,{yp) for a certain mapping I" recursive in %,

The present chapter shows that a good deal of the theory developed in
chapter 9 can actually be reestablished in this more complicated situation. Of
particular interest is the axiomatically defined operation St. An example of a
translation-like operation is given in the exercises below, while others are
considered in chapters 21, 22, 24, 25, 28, 30. The concept of translation-like
operation is important for the considerations in chapters 14, 15 and crucial for
the study of Skordev combinatory spaces in chapter 27.

Formally, assume that a monotonic operation { }»:.% —% and fixed
elements K,,....K,,e# are given together with mappings X,,
LFoF, E,-IgF-F  recursive  in By=1{K,,...,K,,
(Ko),...,{K,»} such that

0) (oY =Zo((e),(¥))

(1) (@.9)) = Z,((@D, (YD),

(2) Ke>»=Z,({o))

(3) Lol =2Zs{0)),

@) Py =Z{@))

(5) o=Zsd0))
for all ¢, W. Under these conditions ¢{ } is said to be a t-operation.
It is convenient to include I, L, R in the list K,....,K,,. On the other hand,
members of %, will sometimes be dropped, provided they can be obtained
from remaining ones by means of the basic IOS-operations.

The operation ¢ ) 1is itself a t-operation with mappings Z,=
46,0,.0,0,, Z,=10,8,.C(0,,0,), Z,=%,=18.PBQ, Z,=10.C[OC],
Zs=A460.LO[L] which are prime recursive in C, P, Q.

It would appear that the basic features of t-operations are (0), (1), (4).
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Actually, whenever { ) satisfies (0)-(4), then it is easily seen that
{  py=A40.(0,40)) satisfies (0)—(5), while it will be shown below that (0), (1)
imply (2), (3) by means of a modified y-axiom.

An element ¢ is t-recursive in < # if

pecl(@Bouw B/ ILL >, [ 1¢ )

and similarly for mappings. The notions of prime recursiveness etc. are
also extended in this way.

The following Parametrized Pull Back Theorem plays a key role here by
ensuring that all t-recursive mappings have the property given in (0)—(4) for
the initial operations ¢, I, < >, [ 1.4 D}.

Proposition 10.1. If T is a unary mapping t-recursive in 4, then there is a
mapping I'* recursive in #,U{ %) such that I'= A0.T*({#)).

Proof. It suffices to construct a mapping ['** recursive in #Z,u{(%)
such that {I'(0)p = I'**({0)) for all & and then take ['* = A0.Z5(T"**(0)).

Take (A0.0)** =10.0, (A0.Y)** =40.{y) for all yYe{K,,....K,}u
B, (A0.(Yp)** = 20.2,({y)) for all ye{K,,...,K,}.

Let I'f*, T'5* correspond respectively to I'y, I';. Then take

(40.T,(O)T5(0))** = 26. Zo(T'T*(0), [3*(0)),

(40.(T"y(6), T2(0)))** = A6.Z (T'T*(6), 'T*(B)),
(40.<T(0)>)** = 26.Z,(I't*(9)),
(46.[T'1(0)])** = A8. Z5(T'1%(0)),
(20.4T1(0)p)** = 40. Z(T'T4(0)).

This completes the proof.
As an easy corollary we get a Pull Back Theorem for elements,

Proposition 10.2. An element ¢ is t-recursive in # iff it is recursive in
Byw{ABY. In particular, ¢ is t-recursive iff it is recursive in #,.

Proof. If ¢ is t-recursive in &%, then so is the mapping I' = 10.¢. Take T'*
to correspond to I' by 10.1. Then @ =T%I}); hence ¢ is recursive
in #,0{%#}, which completes the proof.

Relative t-recursiveness possesses the ordinary properties stated at the
beginning of chapter 7. Certain specific characterizations may be obtained by
7.11, 10.2. Analogs to 7.18-7.20 for mappings t-recursive in % may also be
established.

The Pull Back Theorems and the normal form results 9.3-9.7 imply
corresponding Normal t-Form Theorems,

Proposition 10.3. If @ is t-recursive in %, then ¢ = 1[¢’] with a certain o strictly
primitive in #,0{%#). This follows from 10.2, 9.3.

Proposition 10.4. If " is a n-ary mapping t-recursive in 4%, then

C=40,...0,. [0, {{0,)),.... {6,>>)]

with a certain ¢ strictly primitive in Zyu{#).
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Proof. Proposition 10.1 and an analogue to 7.20 imply that there is an n-ary
mapping I'* recursive in HBou{#)» such that I'=4i0,...0,. I'*
(46,),...,40,»). Applying 9.4 to I'* we get the desired normal form.

Two t-Enumeration Theorems follow.

Proposition 10.5. If % is finite, then there is a unary mapping X t-recursive
in # and universal for the unary mappings t-recursive in .

Proof. Take a unary mapping I* recursive in #,u{(#) and
universal for the unary mappings recursive in #ow{#) by 9.19. Then, using
10.1 we see that £ = 16.X*%({6)) i1s universal for the unary mappings t-
recursive in 4.

Proposition 10.6. If 4 is finite, then there is an element ¢ t-recursive in #
and universal for the elements t-recursive in 2.

Proof. Take the mapping Z of the previous statement. The element o = Z(I)
is t-recursive in 4 and whenever ¢ is t-recursive in &, then so is I’ = Af.¢;
hence there is n such that I' = 1.7%(8), which implies ¢ = fig. This completes
the proof.

Let 28 be a fixed subset of %, let % stand for the set of all elements t-recursive
in # and .# for the set of all unary mappings t-recursive in %. Notions of
clement and mapping principal universal respectively for %, .# are introduced
by the same definitions as in chapter 9. All the further statements and proofs
of that chapter then remain valid in the present context. However, the analog
to the Recursion Theorem 9.23 requires the following t-Transition Theorem.

Proposition 10.7. Let I be a unary mapping t-recursive in %. Then there is
a mapping I'* t-recursive in # such that ['*(8) = (I'(L0), T*(R6)) for all 0. In
particular, Al *(8) = I'(70) for all n, 0.

Proof. It suffices to consider the mapping ( ). Let a t-recursive
mapping { )* correspond to { ) such that {0)% = ({ L8} ,{ROD*) for all 6.
Then, given a unary mapping I t-recursive in #. take I, to correspond to I' by
10.1, T’} to correspond to I'; by 7.21 and finally take I'* = A6.T'f({6)%). It
follows that

I'*(6) = (T' (LB ™), THRAOP™))
=(I'y((LOD), TT((ROY*)) = (T(LO), T*(RA))
for all 6; hence I'* corresponds to I'.

The mappings I'y = 40.Z4({ L), 0), Iy = A0.Z({ R), 0) are recursive in %,.
Take a mapping ['# to correspond to I'y by 7.21 and a mapping I'; recursive in
4, such that I';(0) = (0, I'5(I",(0))) for all § by exercise 9.8, then take { }* =
AB.THI5({0))). 1t follows that

{0)* =TTH(I5((6D)) = (T ((LT5({0))). TTRT 5({0)))
=(T({6)). TT(I'5(T'2({6)))))
=({L8),I'{(I"5((RE})))
=({L8).{REOY¥)

for all @, which completes the proof.
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A Generalized t-Recursion Theorem may also be established by adapting
the hint to exercise 9.8. To obtain a First t-Recursion Theorem, however, one
has to employ a stronger p-axiom.

The notion of t-inductive mapping is introduced by modifying the definition
given in chapter 5. Namely, replace {I, L, R} by %, in the first clause and add to
the second clause the following case of { ):

IfI'): %" — & is t-inductive, then so is I' = 16,...6,. {I';(6,....,0,)).

A t-simple segment is a subset of # of the form {6/{0) < (1)}, where Z is
a given mapping recursive in %, such that Z,({0))= () for all &.

Axiom tpA. For any n+ 1-ary t-inductive mapping I and any 8,,...,6, the
inequality I'(@,,....0,,0) < 0 has a solution which is a member of all t-simple
segments closed under the mapping 40.1(0,,....6,,0).

The axioms pA |, uA,, pA; are now completed by axiom tuA,

tuA; = uA+tpA, i=1,2,3.

The use of a modified p-axiom will be indicated by the corresponding number
of asterisks.
We now prove the First t-Recursion Theorem.

Proposition 10.8*. If " is a unary mapping t-recursive in %, then the element
10.1(0) exists and is t-recursive in 4.

Proof. We modify the translation method of the proof of 9.12* so that the
role of ¢ ) is played by { ).

Let 0, be the solution to I'(f) < 0 assumed by tuA, let I'* correspond to
AG.4T(0)» by 10.1 and let ', = A8. Z(T*(6)). Then I, isrecursive in B, u{ %),
hence 0, = uf.T ,(0) exists and is recursive in B, u{ @) by 9.13%,

It follows that

(T0)) =Ze((T(0))) = Zo(I*((03)) =T ,({(OP)

for all 0. In particular, I';({0,)) = {(T(0,)) < (0o implies 0, < {0,). On the
other hand, consider the t-simple segment

& ={0/{0)> <0} ={8/(0) <Z4*(0,))}.
If feé&, then

(IO =T,((8))<T',(6,)=90,,

hence (A, be& by tuA. Therefore, (#,) =60,, hence 0, =Z.(f,) and 8, is t-
recursive in 4.

We still have to show that 6, = pf.T(0). If T'(7) < 7, we get T',({t)) < {1},
hence 6, < {t) which implies 8, =Z4(t;) < Z5({t))=1. This completes the
proof.

Analogues to 9.14%-9.16* and exercises 9.3*, 9.4 may also be established for
t-recursiveness. In particular, it follows from the analogue to 9.15% and the
proof of 10.8* that the solution to the inequality T'(6,,....0,,#) < § assumed in
tpA is exactly p0.T(0,,...,0,,0). (This fact will be used in the proofs of 10.9%,
10.10%)
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The following two statements show that the existence of mappings X, X,
implies the existence of £,, ¥, by tuA;.

Proposition 10.9%. Let X, X, satisfy (0), (1). Then there is a2 unary mapping ¥,
recursive in %, satisfying (2).
Proof. Take
=200, . Ze(Z1(Ze(0, (L}), Zo(01,(R})))

and £, = 40.40,.1(0,0,). The mapping I' is recursive in %, hence so is Z, by
9.14*, 1t follows that

T ) ({e)»)=Ze(d(eL, (@) R)}) =Zs({{p>)) ={<@D).

hence Z,({¢)) <{{@>). On the other hand, consider the t-simple segment
& =1{8/40) <Z,({@))}. If 0cé, then

{(@L,0R)) =T({@),{0») <T({ 0}, Z,({9))) =Z:({¥})
hence {{¢)>) < Z,({@)) by tpA. This completed the proof.

Proposition 10.10%. Let Z,, Z, satisfy (0), (1). Then there is a mapping X,
recursive in 4, satisfying (3).
The proof repeats that of 10.9* with

=100, Z¢Z,({I),Zs(6,0,)))

and Z;=260.u6,.T(0,8,).

We bring this chapter to a close by introducing a specific t-operation which
subsumes almost all the t-operations studied in the book.

Let & be a nonempty subset of #, St:% — F (storing operation), Ky, K,
K,e# and suppose that the following axioms be satisfied with x, y ranging
BveT. o,

sA;. xKy(L,R) = (xL, xR).
sA,. xyK,e¥, xyK,K;=xy.
(8) xSt(p) = ox,
Vx(pxy < pxa)=>St(p)¥ < St(p)o.

One may assume without loss of generality that K, = St()K . For otherwise
SHI)K, satisfies sA; and St(I)K, = St(I)St({)K, by ($), hence K, can be
replaced by St(I)K,. Similarly, we assume K, = St(St(I))K .

Propositions 6.35, 5.6, 5.7%* and exercise 6.6 imply that { ) is a storing
operation with & = {fi/new}, Ko=C, K; =P and K, = Q.

We now establish some properties of the storing operation.

Proposition 10.11. St is monotonic.
Proof. If ¢ <, then gpx <x for all x; hence St(¢p) < St() by (8).

Proposition 10.12. St(oy) = St(p)St().
Proof. We have ifx = xSt(y/); hence @yrx = @xSt(y) for all x, which implies
St(py) = St(@)St(y) by (5).
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Proposition 10.13. St((¢, ¥)) = K(St(p), St(i))).
Proof. The equalities

(. Y)x = (px, Yx) = (xSt(e), xSt()) = xK o(St(9), St{))
imply St((¢, ) = K(St(@), Sty)) by ($).
Proposition 10.14, There is a mapping X, recursive in K, St(L), St(R) such

that St({¢)>)=Z,(St(¢)) for all ¢.
Proof. The mapping

3, = 10.u0,.Ko(6St(L),0,S(R))

exists and is recursive in K, St(L), St(R) by 6.38, 6.39. It follows that
Ko(St(p)St(L), St({ ¢ »)St(R)) = St((pL, (¢ > R)) = SU({ ¢ ),

hence XZ,(St(g)) < S{{{p ). On the other hand, Rx = xS(R) and
(pLx, xX5(S1(@))StR)) = xKo(St(@)SH(L), Z,(St(@))St(R)) = xZT,(Si(¢))
imply (@ )x < xZ,(St(¢p)) for all x by (£); hence
Si( (@) < StDZ(St(p)) = Z,(St(p))
by (8). The proof is complete.

Proposition 10.15. St([o]) = K, [St(¢)K ,]St(]).
Proof. We have

Ko(StlI), St(@)St(Le])) = St((L. L)) = St([e]),
hence K[St(@)K,1St(I) < St([¢]) by 6.10. On the other hand,
(%, pxKo[SH)K 018t(I)) = (xSt(I), xSt(p) K o[ St(p) K ,]1S1(1))
= xKol, St{@)K o[ St(p)K o ])St(I)
= xK,[St(p)K,]St(1);

hence [o]x < xK,[St(0)K,]St(I) for all x by (££). Therefore, St([o]) <
Ko [St(@)Ky]St(I) by (8), which completes the proof.

Proposition 10.16. St(St(¢)) = K, St(0)K,.
Proof. We have
pxy = @xyK,K, = xyK,St(¢)K,
for all x, y; hence St(p)y = St(I)yK ,St(@)K, for all y. which implies
SH(St(e)) = SHSUD)K SH)K, = K, St(p)K ;.

Proposition 10.17 (Storing Operation Theorem). The operation { )=
Ap.(p,5t(¢)) is a t-operation with functional elements K,, K,, K. (So
the corresponding set %, consists of L, R, Ky, K, K5, St(I), St(L), S(R),

Si(Ky), SH(K,), Si(K,))
This follows from 10.12-10.16.
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Proposition 10.18. Let [e¥-#%#. Then St is a t-operation and taking
L = A0.81(1)8, all t-simple segments are normal.

Proof. Let I=K,K, for certain K;e%, K ,e#. Then ¢ = @K K,=
K St(@)K, for all ¢, hence St is a t-operation with functional elements
Ky — K, by 10.12-10.16. Every t-simple segment & = {#/St(t) < St(I)t} is
normal since & = {0/¥x(0x < x7)} by ($). The proof is complete.

Proposition 10.19%*, Lety,, ¥, €% such that iy ,e.% and my o, = i for all n.
Then the operation { ) can be expressed in terms of St and the elements 1,
1. (Assuming without loss of generality that y, = <{I> .

Since { ) is a storing operation, 10.19%* is a particular instance of the
following more general statement.

Proposition 10.20. Let St, St* be storing operations with corresponding sets
&, L* and let o, 1, eF such that Ly, = F* g, = St(l). Then St can be
expressed in terms of St* and i, ¥, . If # )y = ¥* also holds, then St* can
also be expressed in terms of St, ¥, and ¥,. (Assuming without loss of
generality that o = St{(IZW g, v, = St*(Ih)y.)

Proof. We have

©x = QX = XSt
for all xe.%, hence
St(@) = St St*(@Wry = PoSt* (o),

by ($). If £y = &*, then for all x*e.2* there is a xe.% such that x* = xy,,
hence

Px* = @xifg = xSt(@lro = XY ol | SUPN o = x P 1 SPWr
which implies St*(¢) = St{p)q by ($). This completes the proof.

EXERCISES TO CHAPTER 10

Exercise 10.1. Let % be the 10S of example 4.7 or 4.8 and J:M?— M be
injective. Define St(@) by St(@)(J(s, t)) =J(s, @(t)) and St(p)(s)T otherwise.
Prove that St is a t-operation and %, St satisfy the axiom tuA,.

Hint. Take . = {§/se M}, where § = At.J(s, t). Specify elements Ky, K. K,
to satisfy sA,, sA,. Use exercise 5.3 and 10.18.

In spaces with t-operations the operation ¢ is alsmost always expressible
intermsofd ),ie. { ) isprime t-recursive in certain elements which can be
added to #,. A useful criterion for this is provided by the proof of 5.13:
Whenever the axiom pA, holds for 10,0.(1,0,0) and there is a prime t-
recursive mapping ¢ >, such that Ai{e@), =¢n for all n, ¢, then the
operation { ) is prime t-recursive. Let us, accordingly, discuss this situation.

In the next four exercises the operation { ) is assumed to be prime t-
recursive and the mappings £y, Z,, Z3 — 5 to be prime recursive in %,. (X, is
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no longer necessary.) It follows immediately that relative t-recursiveness and
relative prime t-recursiveness are equivalent, both for elements and mappings.

Exercise 10.2. Prove that 10.1, 10.2 take place with ‘prime recursive’ sub-
stituted for ‘recursive’. In particular, there is a mapping £, prime recursive in
#, such that (@) =Z.({@)) for all @.

The normal Form Theorems 10.3, 10.4 can be further specified.

Exercise 10.3. Prove that whenever ¢ is t-recursive in 4, then ¢ = 1[o] for
a certain o strictly polynomial in #gu{%)p.
Hint. Use 9.2.

Exercise 10.4. Prove that whenever a unary mapping I' is t-recursive in 4,
then

= 0.T[p(,{6)3,....(8bn+3)]

with ¢ strictly polynomial in #,0{(#) and n=cZ,)c(Z,;). In
particular, T' = 10.1[o(I,{ 0} 4)] provided ¢(Z,) = ¢(Z,) = 1.

Hint. Use 10.4, 9.8.

Under certain assumptions, a First t-Recursion Theorem can be proved
using only uA, and tuA.

Exercise 10.5. Let X, be prime recursive in %, and suppose that
e(Z4) = ¢(Zg) = ¢(£,) = 1. Using tuA, prove that whenever a unary mapping I"
is t-recursive in 4, then the element uf.I°(f) exists and is t-recursive in 2.

Hint. The mapping A#.(I'(6)) has a normal form A0.1[p(1,{6)%)]
with ¢ t-recursive in 4 by exercise 10.4. The mapping I'y = 10.Z ([ (I, 63)])
is prime recursive in {@} U %, and ¢(T';) = 1; hence the element 6, = uf.T",(6)
exists and is recursive in {¢p} U B, by 9.11. Following the proof of 10 8%, show
that £4(6,) = n6.T(8). :

What happens if there is a second t-operation{ »* over #? Certainly, one
would like to consider t¥, t-recursiveness, i.e. to add both { },{ }* to the
initial [OS-operations. One way of doing this is to proceed as in the present
chapter with t-recursiveness playing the role of recursiveness and { }*
playing the role of { }». There is also another option, namely to combine
{ »,{ »¥into a single t-operation, which allows a direct application of the
theory already developed.

Exercise 10.6. Let{ )}*satisfy (0)—(5) with corresponding mappings § — X¥
t-recursive in a set #§ and suppose that there exists a mapping Z* t-recursive
in #% such that {((@)P*=Z*{@)*) for all ¢. Show that { »**=
4. {{@p*) is a t-operation and there are mappings I',I'* recursive in
Bo U BF) such that () = T({@)**), {@)* =T*{p)p**) [or all ¢. (There-
fore, t*, t-recursiveness and t**-recursiveness are equivalent.)

One drawback of the above construction is that if both { »,{ »* satisfy
corresponding tu-axioms, then no such axiom for { }** seems to be
automatically implied.
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Exercise 10.7. Show that the implication in ($) can be replaced by its
particular instance Vx(x¢ < xi)=St)p < St(I)y, taking the equality
St(I)St(¢) = St(p) as an axiom,

Exercise 10.8**. Let 1, ,eF satisfy ap e, mopy, =n for all n. Show
that the operation { ) = Ag.(¢, St(¢p)) satisfies the assumptions of exercises
10.2-10.5 and so does the operation St, provided e & o #.

The following exercise establishes a ‘boldface’ t-Transition Theorem. As
opposed to the ‘lightface’ results, their ‘boldface’ versions are concerned with
a situation in which some or all members of & are taken as initial elements
and used as enumeration indices. In other words, % plays the role of {A/new}.

Exercise 10.9. Let K,, K5, K,e#, xKy =1, xK 5 = xx, xyKs = yx for all x,
ye# and allow in tuA segments of the form {6/x0 < t}. Take { }» =S8t an
arbitrary member of # for K, and add K; — K to the initial elements. Show
that for every binary mapping I t-recursive in 4 there is a mapping I'™* t-
recursive in 4 such that xI'*(0) = I'(x,0) for all x, 6.

Hint. By induction on the construction of I'.

Remark. These additional assumptions are satisfied by the operation St of
exercise 10.1 and others to be considered later. One may use exercise 10.9 to get
‘holdface’ Normal Form, Enumeration, Second Recursion and Rice
Theorems. For instance, given a finite # and not necessarily finite ., € &,
there exists a ¢ t-recursive in 4 such that, if ¢ is t-recursive in ¥, U %, then
@ = xig for certain xecl(.¥,/Axy.xyK,), new; similarly for mappings. (A
related Enumeration Theorem is suggested by Skordev [1982a].) ‘Boldface’
representability results can also be obtained, with prime computability over &
playing the role of p-recursiveness. The First Recursion Theorem is not
affected by the ‘lightface—boldface’ division of the theory. As for a ‘boldface’
Rogers Theorem, that is quite a different matter. And we can not refer to a
‘boldface’ Theory of Numberings, because there is no such theory available.

Exercise 10.10. Let % be a nonempty set of mappings X% - #, St:.F = %,
K,, K,, K,e# and suppose that the following axioms are satisfied.
sA1. X(Kolo,¥) = (X(op), X(¥)).
sA,. For all X, Y there is a Z such that
X(Y(K;@))=Z(@) and Z(K,)=X(Y(I)).
($) X(St(o)) = o X (), RX(I) = X(D)St(R),
YX(pX () < pX(a))=St(p)¥ < St(p)o.

Show that{ ) = ig.(p, St(¢p)) is a t-operation with functional elements K.
K,, K,.

Hint. Follow the proofs of 10.10-10.16.

The storing operation introduced in this way generalizes the former one
which corresponds to a set % of mappings X such that X(¢p) = X(I)e for all .
Another example will be given in the exercises to chapter 21.



CHAPTER 11

The collection operation

This chapter is devoted to an infinitary pairing operation called collection. For
instance, in example 3.1 the operation Co in question brings the members of a
sequence {@,} together in a single element ¢ = Co({g,}) such that (in the
notations of chapter 3) @(s01") = ¢,(s) for all n, 5. Although this operation is
clementary, being infinitary, it is classically noneffective.

One can reasonably argue that the present study of effective computability
should have nothing to do with noneffective operations. However, collection
has some interesting aspects. It is natural and also has effective applications. In
particular, one may introduce the concept of a sequence {¢,} recursive in 2 as
a sequence for which the clement Co({¢,}) is recursive in 2. More important is
the fact that essential parts of the recursion theory on IOS admit an adaptation
with Co added to the initial operations; we are interested in such extensions
anyway. Finally, while in chapter 2 the operations { »,[ ] were intuitively
interpreted by expressions (@0, 7, 02,...), (I, (I, ¢(I,...))), collection enables
one to formally treat infinite expressions constructed by means of =, IT. In this
respect, there is a clear parallel with the so called infinite diagrams in Scott
[1971].

Given an 108 & =(#,1,1I1, L, R), we say that Co:#“— % is a collection
operation iff the following three axioms are satisfied.

cA,. Co is monotonic.

CAZ' CO{(D”}PJ/ = CO{‘%&’}-
cA;. Co{p,} =(0,Co{@ur1})

where {@,, } is the sequence ¢y, ¢,,... and Co{g,} is written for Co({@,}).
The axioms of Co are obviously infinitary versions of those of Il. A simple
sufficient condition which ensures the existence of a collection operation will
be given in the exercises, together with examples of IOS which satisfy it.
Some properties of collection follow, concerning in particular its inter-
connections with the initial I0S-operations.

Proposition 11.1. iCo{p,} = ¢, for all n.
This follows from axiom cAj.

11.1 shows that the element o= Co{p,} is universal for {@,/new}.
Therefore, all countable subsets & of # have universal elements, though not
necessarily in 4. Indeed, whenever ¢ is universal for {f/ncw}, then 4.4 easily
implies o # n for all n.

84
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Proposition 11.2. Co{¢,a}Co{¥,} = Co{e,¥,}. In particular, Co{ii}Co{¢,} =

Co{@n}-
Prool. Using cA, and 11.1, we get

Co{p,i}Colys,} = Co{pnCo{y,}} = Co{puly}.

Proposition 11.3. Co{(¢,,¥,)} = Co{(aL,7iR)}(Co{¢,}, Co{¥,}).
Proof. It follows that
(@us¥) = (@Co{p,}, iCo{ Y, }) = (AL, ARNCo{p,}, Co{y,})

for all n, which completes the proof by cA,.

Proposition 11.4. Co{[¢,]} = Co{(L,n+1)} [0], where o = Co{@,(L,n+1)}.
Proof. Since Co{(L,n+ 1)}[6]=Co{(I,n+1[¢])} and Co{[e,]}=
Co{(I,R[¢,])}, it suffices to show that R[¢,]=n+1 [a] for all n.
The equality
a(I, Co{R[,]}) = Co{eI,R[¢,])} = Co{R[p,]}

implies R[a] < Co{R[@,]} by 6.11, hence n + 1 [¢] < R[¢,] [or all #n. On the
other hand,

oul,n+1[6])= @ L,n+1)[6] =n+1 [o],

hence R[@,] <n+ 1[c] for all n by 6.11. This completes the proof.

The above properties indicate that collection behaves to some extent as a t-
operation. The following statement shows that consecutive applications of Co
can be reduced to a single one.

Proposition 11.5. Let J:w>—w be a bijection, p = Co{Co{J(m,n)},},, and
@ smmy = O fOT all m, n. Then Co{Co{@pntn}tm = PCO{@4}-
Proof.

CO{CO{@pn}a}m=CO{CO{Psimm }n}m=Co{ Co{I(m, n)CO{@y} }o}m=pCo{ D).

Proposition 11.6. A(@,y) = 1[o], where ¢ = Co{(py"L,n +2)}.
Proof. We have

o(l, Co{Alo, Y)y"}) = Co{ (@y", M. Y ")} = Cof (@, A, Y)"}
= CO{A(Q&! ‘.b)',t‘"},

hence R[o] < Co{A(p,¥){"} by 6.11. In particular, 1[c] < A(¢, ). On the
other hand,

o(y, R*[¢]) = o(yL, R*)[d] = Ra[c] = R*[0]
implies R[o]¥ < R*[¢] by 6.11 again. Therefore,
(0. 1[6W) < (¢, 2[c]) = (¢0,2)[0] = Do[a] = 1[a],
hence A(p, ) < 1[¢]. The proof is complete.
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Primitive recursion can also be expressed by the equality A(p,V)=
{IyCo{py"} which follows easily from 6.34. Conversely, Co{qy"} =
Co{ii} A, ) follows by making use of cA,.

The notion of relative recursiveness is naturally extended by adding Co to
the initial 10S-operations. Namely, ¢ is c-recursive in 2 iff

pecl({L,R}w B/, I1,{ >, [ 1Co)

Proposition 6.9, 11.6 imply that, equivalently, ¢ is c-recursive in # iff
pecl({L,A}wdB/>,[ ].Co). Notions of elements prime c-recursive, primitive
c-recursive, c-primitive and c-polynomial in % are introduced in a similar way. It
follows from 11.6 that the relative c-recursiveness and prime c-recursiveness
are equivalent, while the equality A(p,y) = {I)Co{py"} implies that ¢ is
primitive c-recursive in 4 iff it is c-polynomial in {{I)}uw % . The ordinary
properties from the beginning of chapter 7 arise again with 7.4 modified
essentially as follows.

Propasition 11.7. If @ is c-recursive (c-polynomial) in %, then g is c-recursive
(respectively, c-polynomial) in a countable subset of Z.

It is worth mentioning that, while there are max {Card (%), ®} elements
recursive in 4, there are Card ({L, R} U Z)” elements c-recursive in % since
CO[(‘D,,} = CO{I‘!'!"} iff VH(Q’)“ = %)

The classically noneffective nature of Co finds its expression in the fact that
all partial number theoretic functions are representable in terms of Co.

Proposition 11.8. Every partial number theoretic function f is represented by
an element pecl(@ v {0}/Co).

Proof. By induction on the arity of f.

If f is unary, then Co{f(n)} represents it. (Recall our convention that

f(n) = 0 whenever f(n)1.)
Let f be n+ l-ary and for all m an element ¢, represent is;...s,.
[(8y,...,5,,m) by the induction clause. Then ¢ = Co{¢p,,} represents f since

§i...50mQ =5 ... 50, =f(s),-...5,,m)
for all s,...,s,, m.

Passing from elements to mappings, one sees that collection makes it
possible to consider w-ary mappings. A notion of mapping I':F“ > F c-
recursive in 2 is introduced inductively as follows, taking in view of 6.9, 11.6
the element A4 initial and omitting the operations IT, ¢ .

1. The mappings ' = A{6,}.0;,,i >0and T = A{0,}. , we{L, A} U, are c-
recursive in %

2. fI,:#°—F are c-recursive in 4 for all m, then so are

I'=A{8.}.I's{0.}1{6,}, T =4{0,}.[T:{6.}],
"= 4{0,}.Co{I',{6,} }.
Of course, n-ary mappings c-recursive in 4 may be considered as well: an o-

ary mapping with the clause 1{6,}. 6; used for finitely many i in its construction
has only finitely many genuine arguments.
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The properties of the collection operation given above allow us to establish
a Normal c-Form Theorem.

Proposition 11.9. If [":#“— # is c-recursive in &, then
I'=i{0,}.1[¢(I, Co{b; i})]

with a certain sequence {i,} and ¢ c-polynomial in Z. Another normal form is

I'=A{6,}.1[o(],Co{<6,> })].
Proof. We shall prove first that

r=2{6,}.¥[e(l, Ce{f,i}x)]
with certain ¥, ¢, y c-polynomial in 4.
If ' = 4{0,}.6;, then
I'=A{0,}.R[i+ 1(I, Co{0,7}Co{L})],
{L} standing for the sequence L, L,....
If T'= 4{0,} .y, ye{L, A} U, then T = i{0,}. RLWL*(I, Co{,7})].

Let T, =A{6,}. W [0, Co{f,  fl.x.)] and ¥, @,., 1. be c-polynomial
in # for all m.

If T'=4{6,}.To{0,}T:{0,}, then we get by 6.15 elements ¢, @', ', " c-
polynomial in # such that

I = 2{0,} W@, Co{B, i}y, Colb, A}x"].

Taking ¢ = ¢'(L, Co{2n+ 1}, Co{2n+ 2}), x= Co(0y,0x", Ty, 1%",...) and
Jn = lremin,2).» fOr all n, we get

I'= 41{8"} t;JI[qDU, CO{H}.,ﬁ}Z]]-

The case of iteration is a bit simpler, using 6.16 instead of 6.15.

If C=1{0,}.Co{l',{0,}}, then we get by 11.4 elements ¥, @', yp, C-
polynomial in 2 for all m, n such that T = A{0,}.¥/[¢'(I, Co{Co{0;, tmn}njm]-
Take J, p as in 11.5, j;0m = bmms Trmm = Lmn fOT all m, n and 3y = Co{e, }. It
follows by 11.5 that

Co{co{gﬁ,,,l,,xmn}n}m =pCo{t;04}i = pco{ajkE}x

for all {0,}. Therefore, I' = A{6,} .¥[@(I,Co{0,k}y)] with ¢ = ¢'(L, pR).

Now let T'=A{6,}.y[o(l,Colf, n}x)] with ¥, ¢, y c-polynomial in 4.
Substituting (L, Co{0;,n + 1})[xL] for (I, Co{8, fi}y) and using 6.16, 6.14,
we almost get the desired normal form except that Co{f,n+ 5} appears
instead of Co{0, i}. However, Co{8, n + 5} = R>Co{8; i1}, provided j, 5 =1,
for all n.

The alternative normal form is obtained immediately by

Col{f, i} = Co{ni,}Co{{8,)}.

This completes the proof.

A finitary version of 11.9 gives normal forms

=6, ...6,.T[o(I,Co{8, m})],
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1 <i,<n for all m, or

C=18,...0,. 1[0, {0, >, ... 0,))]

with ¢ c-polynomial in %. The elements c-recursive in  have a normal form
1[¢] with ¢ c-polynomial in 4.
A First c-Recursion Theorem follows.

Proposition 11.10*, If T:#*“ — # is c-recursive in 4, then thercis a mapping
[,:#F®—>F crecursive in 4 such that [y =4{6,}.p0.1(0,{0,}). (That is,
for all {6,} T(To{f,}, {6,})=To{0,} and whenever I'(z,{0,})<7, then
ro{gn} = T-}

Proof. The Normal ¢c-Form Theorem gives

r == ’1{6"}1‘[@(13<90>5 C0{<9"+1>}}]
for a certain ¢ c-recursive in 4. The mapping I'* = 466, .1[p(L, (@, 0,)] is

recursive in @, hence so is T** = 10,.u0.T*%(0,0,) by 9.14*. Therefore, the
mapping o = 4{6,). T**(Co{<0,>}) is c-recursive in 2. It follows that

T(To{0,}: {6,}) = T*To{04}, Co{<u>})
=T*I**(Co{{8,>}). Co{<8,>})
=T*¥Co{{0,>})=T0{0,}

Whenever I'(t, {6,}) <7, then

I'*(r,Co{<6,>}) =T {0,}) <7,
hence ['**(Co{{B,>}) <1, ie, I'y{f,} < 7. The proof is complete.

A finitary version of 11.10* states that whenever I': %" "1 # is c-recursive
in 4, then the mapping 48,...6,.20.T(f,...,0,,0) exists and is c-recursive
in 4. In particular, the element u6.1°() exists and is c-recursive in %, provided
n=0.

The collection operation also enables us to solve infinite systems of
inequalities.

Proposition 11.11*, Let I',,: #® — % be c-recursive in 2 for all m. Then there
is a sequence {@,} of elements c-recursive in # which is the least solution
of the system I',,{0,} < @,, m=0.

Proof. The mapping I' = 18.Co{I',{A8}} is c-recursive in ; hence so is
the element ¢ = uf.T(@) by 11.10*,. Taking ¢, = fi@, we get

Tofea) = Dalip) =ml(@) =me = ¢,
for all m.
If T,{z.} <1, for all m, then

[(Co{r,})= Co{I.{7,} } < Co{r,},

hence ¢ < Co{t,}, which implies ¢, < 7, for all n. (Notice that this is the first
and only time cA, was used. Without this axiom one would get that {¢,} isa
least solution to the corresponding system of equalitics.) The proof is
complete.
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The mappings T',, may have finitely many arguments. For instance, a
simple infinite system of inequalities is I (0,4 ) < 0, m > 0. A parametrized
version of 11.11* concerns systems of the form I",,{0,} <0,,, m=0.

This concludes our discussion of the collection operation. As compared
with similar considerations in the previous two chapters, there is a noticeable
omission. Despite having a First c-Recursion Theorem, no c-Enumeration
Theorem has been established. In chapter 9 an element ¢ was universal for
a countable set % iff % < {fio/new}; given a finite set %, there were countably
many elements recursive in 4. Now, given a countable set 2, there are 2¢
elements c-recursive in #; hence the eclements 7, new are inadequate as
enumeration indices. We shall return to this problem in the exercises.

As mentioned in the introduction to this chapter, infinite expressions can
be given a formal interpretation by using collection operation. We sketch
the idea and give several examples.

Given a sequence {¢,}, what value, if any, should the infinite expression
(1, o1, p,(1,...))) have? One would like it to be a member of &, of course.
Suppose for a moment that it is o, and similarly o, ; = (I, @, . {(1, @, 4 2(1,...)))
for all n. Then it follows immediately that the sequence {o,} satisfies the system

{l) {qungn+ 1)=8u’ ?TZO-

However, this system of equalities actually does have solutions. Proposition
11.11* ensures that (1) has a least solution which is a sequence consisting of
elements c-recursive in {¢,}. Now one can return to formally define g, for all n.
Namely, take {g,} to be the least solution of (1); then g, is the value of the
expression we are interested in. The correctness of this definition needs proof
since equivalent systems of equalities can be attached to an expression in
various ways.

Therefore, arbitrary infinite expressions can be interpreted by means of
systems of equalities and vice versa, single equalities and systems of equalities
yield infinite expressions by consecutively replacing right sides of equalities by
their left ones. For instance, given the equality (I,p0)=0, we get
(I, (I, ,...))) by consecutively substituting (I,f) for . Other basic
operations besides o, I1 may also be used.

If ¢,=¢ for all n and {o,} is the least solution of (1), then it is quite
immediate that 6, = 6, for all n. Therefore, g, is the least solution to (1, ) = 0,
ie. 0o =[] So one may write [¢]= (I, @(L, o(l,...))). The equality (@)=
(90, @1,...) is verified in exercise 11.6 below.

Let {5,} be the least solution of the system (¢,,0,,,)=6,, n=0. Then
66 = (0o, ®,,...)and it easily follows that Co{e,} = Co{@}a,, hence collection
itself is expressed via an infinite expression.

EXERCISES TO CHAPTER 11

Exercise 11.1. Let & be an OS to satisfy the following condition.

(c*) Thesemigroup # has a least element O and for any increasing sequence
{6,} there is a ¢ such that 0y = sup,(0,¢) and (¢, 0) =sup,(¥,0,) for
all .
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Determine an operation Co satisfying the axioms cA; —cAj;.

Hint. Given a sequence {¢,}, define Co{g,} as sup,f,, where 8, =0 and
Opsr = (©0s @15e+4s Qs O)-

Notice that Co{@,} = (@, @;,...) and {I)=Co{n} in such a case. It
follows by what we know about the IOS of examples 4.7, 4.8, 3.2 that those
spaces satisfy (c*).

Exercise 11.2. Show that I';#“ % is c-recursive in {y,} iff there is a c-
recursive mapping I'*: % — % such that

I =‘1{9u}-r*(%, Oy, 04,0,,...).

Exercise 11.3. Show that (@, @1,...)=1[p]Co{e,}, where p= Co{(iL,
n+2)}

Hint. By definition (¢4, @,,...) =0,, where {o,} is the least solution to
the system (@,,0,.,)=0,, n > 0. Following the proof of 11.11*, show that
c,=nc for all n, where a=;¢8.Co{((pmm9)} = ub.p(Co{p,}.0)=
R[p]1Co{@n}.

Exercise 11.4. Show that (g, @,,... )¢ = (@e¥, @1 ¥,...).
Hint. Make use of the previous exercise.

Exercise 11.5. Show that (I, @I, ¢,(L,...)))=1[p], where p=Co{(L,

p.n+2)}.
Hint. See the hint to exercise 11.3.

Exercise 11.6. Show that A(,¥)= (@, e, @W?,...). In particular, (@)=
(00, o1,...).

Hint. The sequence {A(p,¥)y/"} is a solution of the system (¥, 0,4 ,) = 0,,
n>0; hence a,=(e,@V,...) < Alp,¥). Use exercise 11.4 to show that
(¢, 6oW) = 6,4, which implies A(p, /) < ay.

Further to the enumeration problem for c-recursiveness, let % be
augmented by a storing operation St satisfying the assumptions of exercise
10.9. Let K.eZ, @& = ¥, < & and suppose that for every sequence {x,k,} .
x, €%, there exist xef#,, keo such that xkK,=Co{x,k,}. (This
imposes additional constraints, e.g. Card(M)>2” in examples 4.7, 4.8)
Assume also that ¥2K,<.%,. Adding K,— K, to the initial elements
and Co, St to the initial operations, the notion of recursiveness is then extended
to t,c-recursiveness for which the following ‘boldface’ t,c-Enumeration
Theorem can be established.

Exercise 11.7. Show under the above assumptions that for any countable
B < F there is an element ot,c-recursive in % such that whenever ¢ is
t,c-recursive in £, U %, then ¢ = xao for certain xe %, new.

Hint. Modify the proof of 9.18, using an analogue to 10.2. Alternatively,
follow the idea of exercise 9.5.

As in the case of t-recursiveness discussed after exercise 10.9, ‘boldface’
Second Recursion and Rice Theorems can also be established.




CHAPTER 12

Consecutive spaces

Given an OS & = (%, I,I1, L, R), we have so far studied clements ‘computable’
from certain elements by means of the initial operations o, Il plus < >,[ 1.
provided  is iterative, and possibly { ). Co. To accommodate notions such
as Kleene’s [1955] concept of hyperarithmetical function, however, one
should be able to consider elements ‘computable’ from certain operations,
particularly operations involving quantifiers.

This leads to the idea of trying to construct another OS &' =(#",I', 11,
L, R") the carrier #' of which would consist of mappings over #. It is an
important feature of the algebraic system of OS that such a construction can
be carried out successfully, and chapters 12, 13 are concerned with recursion
theory on pairs of spaces &, %"

Proposition 12.1. Take &' = {¢'/¢":.F - F &¢' is monotonic}, ¢’ <y il
YO(@' () <y (6)), oW =Ai0.¢'(V'(6)), (@, )=20.(¢'(0), ¥'(0)), I'=40.0,
L'=}0.108 and R'=A6.R6. Then &' =(#',I', II', L' ,R") is an OS.
Proof. We have
I''(0)=TI'(¢'(8)) = ¢'(8),
@'I'(0) = '(I'(6)) = ©'(0),
O'W')0) =o' W (X)) = (¢'¥) ' (6)
forall 8, hence I'p' = @'I' = @' and @'(Y'x") = (@'Y )x".
If @' < @), ¥ <, then
@' ¥'(8)= @' (¥'(0)) < ' (¥1(0) < @1 (¥'1(0)) = 91 1(6)

for all 0, hence @'y’ < @’ ;. Therefore, #' is a partially ordered semigroup
with unit I,
If @' <@y, W <y, then

(¢, ¥)(0) = (¢'(8), ' (8) < (¢1(0). Y1(6)) = (' ¥1)(0)
for all #; hence (¢, ¥’') < (¢}, ¥}). Tt also follows that

(@, ") (8)= (@', )% () = (&' (x (0)), ¥'('(0)))
=(@" (¢ ()= (0"} . ¥ ¥ )NE)

91
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for all 6 hence (¢",4')x' = (¢'y,¥'x). Finally,
Lo, y')(0) = L((¢'(6), '(8))) = L(¢'(0), ¥/'(8)) = ¢'(0)

implies L(¢', ") = ¢'. Similarly, R'(¢', /') = /', which completes the proof.

Sometimes one may be interested in a smaller space & composed of
mappings which are not only monotonic but say, continuous. That is why
we introduce the notion of consecutive spaces as follows.

Let =(#,LI,L,R) and &' =(#"I''II',L,R") be OS such that
@ F -F forall p'eF', o' <y M VO(e'(0) < y'(0)) and (¢, ') = A0.(0'(0),
V(). We write ¢ = A0.¢0, ¢ = A6.p and (———)"for A0.———, provided 0
does not occur in the expression ———, Id=1, Ml=.0.LORO, & =
(J/weB} and B ={f/yecB}, where peF, B F. Let also F = F' and
Id, Mle #'. Then %, &' are said to be consecutive OS. (For such spaces appear
consecutively in the hierarchies of OS studied in chapter 15.)

The OS %, %" of 12.1 are consecutive since the mappings ¢, Id, MI are
monotonic, and hence in #'. Similar constructions yielding consecutive spaces
will be given in chapter 19, while particular consecutive spaces will be studied
in chapters 28-30.

Several corollaries to the above definition follow, dashed letters standing
for members of #.

Proposition 12.2. I’ =1I. Therefore, I' = 6.6.
Proof,
I'=26.1'6)=0.1'(T(0) = I'T=T.

Proposition 12.3. ¢ld = ¢.
Proof.
@ld = A0.@(1d(0))= A8.3(1) = 16.p = ¢.

Notice that 12.3 implies # < #".
Proposition 12.4. ¢’ = ¢ for all @,y In particular, Ide' = Id for all ¢'.
Proof.
oY =10.9(4'(6)) = Al = ¢.

Proposition 12.5. Id¢.7.
Proof. Suppose that Id = @. Then ¢ = ¢(I)=1Id(I)=1, hence Id=T=1T".
Therefore,

L=TCL=HL=Ild=1I,
which is not the case.
Proposition 12.6. ¢ < iff o <.
Proposition 12.7. The members of %' are monotonic mappings.

Proof. Let ¢'c% " and 8 <. Then § <7; hence ¢'f < ¢'%, which implies
@' < 0'(x).
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Proposition 12.8. ¢ < iff ¢ <.
Proof. If ¢ <y, then @(6) = @8 <y =J(0) for all 8, hence @ < .
If ¢ <, then ¢ =@(I) <Y} =y.

Proposition 12.9. ¢\ = o).
Proof. -
@Y = A0.9()(0)) = A0.0y0 = @y.

Proposition 12.10. (@, ¥) = (o, V¥).
Proof.

(@) = 46.(G(6), §1(8)) = 46.(pB), Yr6) = 26 (. )6 = (. ).

Since L(¢,Y')= ¢' and R(¢',y/) =y for all ¢’,)), one may also assume
that L' = L and R’ = R. Therefore, the following statement holds.

Proposition 12.11. The OS .% is isomorphic with the proper subspace
P=(F I F1LLR) of .

Some immediate statements follow.
Proposition 12.12. oy’ = A0.0y/'(0).
Proposition 12.13. ¢' = 160.¢'(y6).
Proposition 12.14. ¢'ld =(¢p'(1))".
Proposition 12.15, @'y = (¢'(4))". In particular, @y = (o))"

Proposition 12.16. M{p', ') = 16.¢"(0)y'(6).
Proof.
Ml(q', y') = 26. MI((¢', yr')(6)) = 26. M I((¢"(8), y'(6))) = 16. ¢ (6)'(6).

Therefore, the element M/{ represents in %' the semigroup multiplication
of #.

Proposition 12.17. M[¢%.
__ Proof. Suppose that MI=¢. Then ¢ = @(I) = MI(I) = LR, hence LY==
LR(R) = MI(R) = LR?, which is not the case.

Proposition 12.18. Ml(¢, ") = ¢y’
This follows from 12.16.

Proposition 12.19. Ml(¢,I') = .
This follows from 12.18.

Proposition 12.20. MI(¢, ) = (o).
This follows from 12.18, 12.15.
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Proposition 12.21. Ml(¢'ld, I') = ¢'(I). Whenever yId = ¢/Id, then = ¢'(I).

This follows from 12.14, 12.19.

Being especially interested in [OS, we assume from now on that both & and
" are iterative. The u-axiom of % used will as usual be indicated by the
corresponding number of asterisks. In order to ensure that % is a subspace of
&’ isomorphic with & as an 108, we assume finally that {I"> = {[}.

Notice in connection with the last equality that (L, {I>R')= (L, {I>R) =
{1y implies (I') < {I'). The converse inequality can also be proved by pA,:
RI'=IR, (L,{I')R)=<I'y imply {I» <{I'} by the suggested hint to
exercise 12.1. Moreover, {I'y = {I'>{I} by 6.22; hence {I') = {I) whenever
(ry=r.

An immediate example of consecutive [0S is that of the IOS % of example
3.1 and the space % obtained from it by 12.1. The latter is iterative since

being isomorphic with the IOS of example 3.2, while the equality m =
{I'> =T also holds in this case.

Proposition 12.22. {@>= (o).
Proof.

(PL,{p> R)=(oL,{@ R)={0)
implies ¢@> =<I'>{ @) by 6.22. Therefore,
(@>=LI<p>=LI>p)=K¢).

Proposition 12.23. [¢] = [¢].
Proof. We have
(I',¢Le]) =, oLe]) =[],
hence [@] < m On the other hand,
(0, o[@1(9) =", [ @]1)(0) = [@1(0)
im_p]ies [¢10 <[@1(0) by (££). Therefore, m(e)s[@]{e] for all 6, hence
[¢] <[@]. The proof is complete.

Proposition 12.24 (Imbedding Theorem). .7 is an iterative subspace of &
isomorphic with the 108 .%.
This follows from 12.11, 12.22, 12.23.

Proposition 12.25. [o'] = A0.20,.(6, ¢'(0,)).
Proof. We have
Lo’ 1(6)= (I, ¢'[91)(0) = (6. 9'([o1(O))).

Suppose that (8, @'(r)) < 7. Then (f, ¢'?) < %, hence [¢]0 <t by (££), ie.
[@"1(8) < 1. Therefore, [¢'](0) = p6,.(8, ¢'(8,)) for all 8, which completes the
proof. (Compare with the proof of 3.4.)
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Proposition 12.26. R'[¢'] = A0.ub,.9((6.6,)).
The proof follows that of 12.25, making use of 6.11 instead of (££).

Proposition 12.27. R'[@'R'] = (uf.¢'(0))".
This follows from 12.26.

Proposition 12.28. Let Tr=¢ ). Then Tris a member of # ' prime recursive
in Id, ML

Proof. Take ¢' = (MI(L, L), MI(R’, R)). Then ¢'((0,6,)) = (OL. 6, R) for all 0,
8., hence

Tr=46.46,.(0L. 0,R) = R'[¢"]
by 12.26.

Proposition 12.29. LetIt=[ 7. Then It is a member of &' prime recursive in
Id, Mi.
Proofl. Taking ¢’ = (Id, M1), we get, using 12.26

It = 26.40,.(1,00,) = R'[¢’].

Proposition 12.30. Tr, It¢.%#.
Proof. Suppose Tr=¢@. Then ¢=@(I)=Tr(I)=<{I), hence {I)L=
@(L)={L>, which is not the case. lteration is treated similarly.

Proposition 12.31. If ¢ is recursive, then it is prime recursive in Id, ML

Proof. All the recursive members of #’ are in #. An easy induction on
the construction of such an element @ shows that it is prime recursive in Id,
MI: we use of the equalities (@G> = MI(Tr@ld,I'), [¢] = MIItpld,I") which
follow from 12.21 and take 12.28, 12.29 into account.

Proposition 12.32. {¢» =[I']¢. In particular, (Id} =[I"]Ild
Proof. We have

(@L,[I']pR) = (¢.[I']¢) =[I']¢;
hence {¢» < [I']¢. On the other hand,
(¢,{920)=(¢L. (PO R0 ={p O’
implies [I7]¢p < {@»O0" by (££); hence [I']¢p <{p)I'=($). The proof is
complete.
Proposition 12.33. { M) = (L' D'MITrMII',R), ).
Proof. Writing p’ for (L' >D'MITrMI(I’, K),I'), we have

p'(B)={LYD{ORYO=(L*LyRID{OR >0
=(L}{ORY0,{LYD{R>R{IRYH)
= ([26RLO, < LY D{ ROR Y RO) = (MI(LO), p'(RE))
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for all 6, i.c. p' =(MIL, p’'R’), which implies {M1> =<1} p’ = p' by 6.22. The
proof is complete.
The following Pull Back Theorem generalizes 12.31.

Proposition 12.34. Let Z< %, # = . Then the following are equivalent.

(1) ¢ is recursive in {Id, MI}UB L.

(2) ¢ is prime recursive in {Id, M} UAU{ B’ ).

(3) @'ecl({L, A, Id, M} BULE Yo, 1)

If all the members of (#') are prime recursive in {Id, MI} VB U %', then &'
can be substituted for {# ) in (2), (3).

Proof. The implication (1)=(2) follows from 7.11, 12.31-12.33 and 12.28,
while the other implications are immediate.

It should be mentioned that {Id, MI} U2 can be replaced by {Id, MI} UZ
above, in view of 12.3, 12.19. In future this fact will be employed without
further mention.

The notion of inductive mapping over & can be relativized by substituting
{I,L,R}u# for {I,L, R} in the first clause of the definition given in chapter 5.
The following statement characterizes this notion of relative inductiveness in
the terms of %",

Proposition 12.35. Let I'bean + 1-ary mapping over # inductive in # and let
I'* correspond to T by 7.20. Then I'* is a member of #' prime recursive in
{Id, MI} u 2. Moreover, ub.T(0,,....0,,0) exists for all 0,,....0,.

Proof. By induction on the construction of I,

Let T=10,...0,.0, 1<i<n If i<n, then I*=20.i0=LR". If i=n,
then I'* =A08.R""'8=R""1.

T =40,...0,.0, ¢e{l,L,R} UB, then T* =10y = {.

Let I'y, T, be n-ary and I'f, I'¥e%" correspond to I'y, T'5.

If T'=416,...0,.T'(0,,....0)T04,...,6,), then T*=i0.TTOI3(0)=
MI(T%,T%).

If T=40,...0,.(Ty(6,...,8,), T5(6,,....0,)), then I'*=40.(I'}(6),T'35(0))=
(', 3.

Let T', be n+ l-ary, n>0, and I'fe#’ correspond to I',. Take

* = R[THL2,...,LR" 2L, R" 'L, R)].

Then it follows that I'*=i0.pf, T'¥(00,....n—26,R"7'6,0,)) by 1226,
hence T'* corresponds to the maping I =46, ...6,.40.T,(8,....,0,,0). This
completes the proof.

Proposition 12.36. Whenever ¢'€.%" is prime recursive in {Id, MI} U 2, then
¢ is a mapping inductive in %.

This follows from an easy induction on the construction of ¢'. In parti-
cular, if ¢ is inductive in 4, then so is [¢'] since [¢'] = A0.u8,.(6, ¢'(0,))
by 12.25.

Proposition 12.37. Let I' be a unary mapping over %. Then the following
are equivalent.
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(1) I' is a mapping inductive in 4.

(2) T is a member of & prime recursive in {Id, MI} L.

(3) I is a member of # recursive in {Id Ml}u%.

This follows from 12.34-12.36.

The following Conservatweness Theorem is the central result of this
chapter.

Proposition 12.38%, Let " be a unary mapping over & . Then the following are
equivalent.

(1) T is a mapping recursive in 4.

(2) T is a member of ‘F’ prime recursive in {Id, MI} U .

(3) T is a member of #' recursive in {Id, MI} u%.

This follows from 12.37, 9.9 and 9.15*. Notice that 4 can be replaced by A.

Therefore, the relative recursiveness of % is conservative in the next space
&'. In other words, the initial operations of & preserve it. This is immediate
for o, IT and quite apparent for [ ] since theiteration of %" is in essence the u-
operation over # by 12.25. However, the [act that the operation translation of
&' preserves the relative recursiveness of .% is curious and worth stating
separately.

Proposition 12.39, If ¢'=#" is recursive in & as a mapping over #, then so is
o).

Proof. Take I'* to correspond to ¢’ by the Transition Theorem. Then I'*
is recursive in #Z and I'*(0) = (p'(LO), I'*(R6)) for all A. It follows from 12.35
that I'*e#", hence '™ = (¢'L, '*R’), which implies {¢'> = {I'>T* by 6.22.
However, {IXIT*@)=T*®) for all & hence {I'>I"*={I>I*=I"* and
(@'>=1T1"%* The proof is complete.

Exercise 7.6 and the above proof imply that the operation translation of
"’ also preserves the relative primitive recursiveness of . Therefore, proposi-
tions 7.21, 12.39, exercise 7.6 and proposition 12.25 throw some more light
on the nature of the operations translation and iteration.

Assume now that { ) is a t-operation over # with a corresponding set of
functional elements %, such that To={ }e#". Then one may establish
analogues to the above statements by adding %}, and To to the initial clements
Id, M1 of #'. Thus let us write &} for {Id, MI, To} u,.

Proposition 12.40. The element {To) is prime recursive in 4.

Proof. Take the mappings { }* I'f,I'; considered in the proof of 10.7.
The mapping I'#, I'y are recursive in %,, hence they are members of F'
prime recursive in {Id, MI} U4, by 12.35. Therefore, { )»* is a member of
Z' prime recursive in #; since { »*=I7fI;To. It follows that
{To)=4 »* by 6.22. The proof is complete.

10.7 guarantees that the operation { ) of %’ preserves the relative t-
recursiveness of &,

Making use of 12.40 and the proof of 12.34, one gets the following analogue
to the latter statement.
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Proposition 12.41. Let # < %, #' < .. Then the following are equivalent.
(1) @' is recursive in BpuBU B
(2) @' is prime recursive in By UBU{E ).
(3) @'ecl({AY oy B LB Yo ).
If all the member of (&' are prime recursive in 8, % u %, then #' can be
substituted for {4’ in (2), (3).
Finally, the Parametrized First t-Recursion Theorem and an analogue to
12.37 give the following t-Conservativeness Theorem.

Proposition 12.42%. Let I be a unary mapping over .#. Then the following are
equivalent.

(1) I' is a mapping t-recursive in %.

(2) T is a member of %' prime recursive in &}, U 4.

(3) T is a member of #' recursive in %, u 4.

EXERCISES TO CHAPTER 12

Exercise 12.1, Let &, %' be consecutive OS, and suppose that & is pA,-
iterative and the equality (¢'L,'R’) = ' has a solution in #” for all ¢’. Show
that % satisfies (£).

Hint. It suffices by 5.11 to find an element {I') satisfying (£). Take
I'>={I> and show that (L,{I'>R)=<{I">. Supposing Ry <y"}; and
(Ly',ty,) <7, show that for all pe# the normal segment &=
16/vn(0y W (p) < TP (p))} is closed under A6.(L,HR).

Exercise 12.2. Let %, %' be consecutive OS and suppose that #' is closed
under p-operation over %, i.e. whenever ¢'e# ', then ufl,.(6,¢'(0;)) exists
for all @ and A0.u8,.(0, @'(8,))e#’. Show that &' meets (££).

Hint. Take [¢']=40.140,.(6,¢'(8,)) and show that (I,¢'[e1)=[¢"]
If (Y, ¢'t") < 7', then (y'(6), ¢'(7'(0)) < 7'(6); hence [¢"](¥'(0)) < 7'(0) for all 0,
ie. [y <7

By 12.25, the requirement of the last exercise are necessary and sufficient
for (££).

Assume now that %, %’ are consecutive 10S. Let I'y,...,I',, be unary
mappings over % recursive in 4 and ¥7(6,I") be the expression considered
in exercise 9.8. Then I'y,...,T,, are members of #' recursive in {Id, MI} u %
by 12.37 and it follows that there is a unary mapping I'" over %' polynomial
inTy,....I', such that I"'(I") = 46.¥7(4,I') for all 'e#". The First Recursion
Theorem for &' implies that I'" has a least fixed point T recursivein Ty ,...,T,,
hence recursive in {Id,MI}u#. (Proposition 9.11 may also serve,
provided ¢(I'") < 1.) Therefore, I' is recursive in 2 by 12.38%,

(1) ¥'(6.T) = I'(0), all 6,

and I' < I'* whenever M™e %’ meets (1). However, (1) may have solutions
which are nonmonotonic mappings and hence not in #'. The next two
exercises will show that I is least among all solutions of (1).
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Take #" = {¢"/¢": % — %} and introduce <,°, [T"asin 12.1. Then &=
(#F7,I', 11", L/, R") is almost an OS except for the nonmonotonicity of = on its
second argument. Notice that the OS %" is a ‘subspace” of %" and whenever
" <, then " < @'y for all p’'e 7.

Exercise 12.3. Let &’ be uA,-iterative and I a unary mapping over F'
polynomial in . Show that u@'.I"(8') = pf".I"(8") where the domain of I
is naturally extended to #".

Hint. Show first by induction on the construction of I'" that " < t” implies
(") < I'(z"). Assuming I'(t") < ", show that the normal segment

&= {9’{9‘ < 1_'"} = {ﬂ’/VB{G’g < {TN(Q)).}}

is closed under T"; hence uf'.T'(0")eé” by uA,.

While the above set of inequalities defining ¢” is most probably uncount-
able, its role could be played by countable one reflecting the construction of
I"". A simple example outlines the idea. Let ' = A0'.¢'(I', 0'Y'0) and I''(z") < 7".
Then fix #e# and show that the normal segment

& = (0O Y0 < T Y0)
is closed under I".

The following exercise establishes a Generalized First Recursion Theorem
for .

Exercise 12.4*, Let &' be pA,-iterative, let #7(6,T) be the expression
considered in exercise 9.8 and suppose that I',,...,T,, are recursive in #.
Show that there is a unary mapping I' recursive in & such that ¥7(0,I') = I'(0)
for all 8 and whenever I'*:# —% and »(6,I*) < I'*#6) for all 0, then
T'(6) < I'*(#) for all 6.

Hint. Use 9.13* for %', exercise 12.3 and 12.38*.

The following exercise establishes a Generalized First t-Recursion
Theorem.

Exercise 12.5%. Let %' be uA,-iterative, let{ »e.#' be a t-operation over #,
let ¥°(0,T) be the expression of exercise 9.8 and suppose that I'y,...,I",, are
t-recursive in #. Show that there is a unary mapping I' t-recursive in # such
that #7(6, ') =T(6) for all 6 and, if T*:# —.% and #7(0,T*) < I'*(0) for all 0,
then I'(6) < I'*(d) for all 6.

Hint. Follow the hint to the previous exercise, using 12.42* instead of
12.38%*,

As was the case for exercise 9.8, exercises 12.4*%, 12.5* can be restated for n-
ary mappings as well.

Exercise 12.6. Show that ¢ is recursive in {{,,...,0,}u @' ill there is a ¥
recursive in @' such that @' = ¥ (Y 1,..., ¥ I').
Hint. Make use of 12.4, 12.32, 6.11.



CHAPTER 13

A'-Recursiveness

Let us recall that the concept of consecutive spaces was introduced in
chapter 12 because we wanted to study monotonic operations other than
the initial IOS-operations. So take consecutive 10S .%, & and fix a subset
Z' of #'. We are interested in elements of % and mappings over % which
can be constructed by making use of operations from #'. This leads to the
following definitions.

A unary mapping [ and % is said to be #'-recursive in #=F iff 'is a
member of ' recursive in {Id,MI}U#U%. An element ¢ is #-
recursive in # iff ¢ is a mapping #'-recursive in #. Therefore, the class
R(#,#') of unary mappings #’-recursive in % equals

(B U{L, R, 1AM} OR /-, TL{ S[ 1)

While the initial operations of ¥ are allowed by the above definition, 12.16,
12.28, 12.29 imply that those of .%° are also available. In some favourable cases
the operations { »,[ ] of % can be eliminated and one may consider the
class

Ro(B, B) = (B (LR, Id, MI, Tr, It} L &[>, TI)

instead. For instance, #,(4. &f) = #(#, ) by 12.38%,

It is obvious that (%, #') = #(#, #'). In order to get equality, one should
prove first that all the mappings in %#,(%4, #') satisfy the transition property,
thus ensuring that 2,(%, #') is closed under the operation ¢{ ) of %' This is
not a major obstacle since translation can be pulled back to the members of &’
by 12.34 anyway. Secondly, one should prove a Parametrized First Recursion
Theorem to ensure that #,(2, #') is closed under y-operation over &, hence
closed under the operation [ ] of . This cannot be expected to be the case
for arbitrary subsets #' of #' and as a result %#,(#. #') may differ from
R(B,B').

Now if &' is finite, then there is by 9.18 a ¢’ recursive in {Id, MI} u &’
and universal for all the members of #' recursive in {Id,MI}uZ'.
Therefore, (#,B')=cl(@u {I''L,R,o'}/>,TI) by exercise 12.6, hence
R(B,{c'}) = R(B,{d'}) for all #. However, while the replacement of %' by
(A can still be tolerated, the replacement of %’ by ¢’ cannot. The mapping
¢’ can hardly be accepted as an initial operation, being far too sophisticated.

The definition of %'-recursiveness assumes a First Recursion Theorem at

100
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the very beginning; it would be preferable to prove such a property rather
than include it in the definition. Therefore, our ability to treat arbitrary
monotonic operations over & is achieved only at a price.

Notions of mappings and clements prime @#'-recursive (respectively,
primitive #'-recursive, 98'-primitive, #'-polynomial) in 4 are introduced in the
same way. For example, a unary mapping I is prime %-recursive in 4 iff it
is a member of ' prime recursive in {Id, MI}u#BU A, an element @ is
prime 4'-recursive in 2 iff so is the mapping ¢. Notice that @, # can be
substituted for ¢, Z by 12.3, 12.19. Further on 7 will stand for LR" or L'R™,
depending on the context.

The notions thus introduced have certain ordinary properties similar to
those stated at the beginning of chapter 7. Some of them are listed below,
mostly concerning mappings. Obvious proofs are omitted.

Proposition 13.1. If o, then ¢ is #’-polynomial in #. If T'e&’, then T is
Z#'-polynomial in #.

Proposition 13.2. If T is #'-polynomial in 4, then it is both #'-primitive in
% and prime #'-recursive in 4. If [ is #'-primitive in 4, then it is primitive
#'-recursive in #. If T is prime or primitive #'-recursive in 4, then it is
Z'-recursive in 4.

Proposition 13.3. If #=#,, #' =4, and I' is #'-recursive (prime #'-
recursive etc.) in 4, then I is 4 -recursive (prime #-recursive etc.) in %4,.

Proposition 13.4. If T is #'-recursive (prime #'-recursive etc.) in #Z and all
the members of # are #'-recursive (prime %'-recursive etc.) in 4, then so
is I

Proposition 13.5. If [ is #'-recursive (prime #'-recursive etc.) in 4 and all the
members of #' are & -rccursive (prime 4 -recursive etc.) in %, then so is I

Proposition 13.6. If I is 28'-recursive (prime #'-recursive etc.) in 4, then there
are linite subsets #,, #', of #, #' respectively, such that [ is % -recursive
(prime 4 -recursive etc.) in #,.

Proposition 13.7. A mapping " is #'-recursive in ¢/ ,....t),, iff there is a
Z'-recursive mapping I'* such that [' = A60.T*((w,... .}, 0)).
This follows from exercise 12.6.

Proposition 13.8. I is #'-recursive in 4 ifl I is prime {#’ »-recursive in #.
This follows from 12.34.

Proposition 13.9*%. T is ¢J-recursive in & iff I is recursive in #.

This follows from 12.38%.

It is also the case that I" is ¢F-polynomial in 4 iff T is polynomial in 2.
However, such an equivalence may fail for the other notions. Indeed, the
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mappings prime (J-recursive in 4 are those recursive in # by 12.38*, while
the mappings prime recursive in 4 are those {Ii}-polynomial in %.

We next prove several Normal Form Theorems for prime #'-recursiveness
and Z'-recursiveness.

Proposition 13.10. If T is prime #'-recursive in &, then I'=A0.Lu0,.T4((0,6,))
for a certain I'y strictly #'-polynomial in 4. (That is, I is a member of
F' strictly polynomial in Zu {Id, M} uZ'.)

Proof. It follows from 9.2 that I' = 1[T";] with- I’ strictly #’-polynomial
in 2. Therefore, I" has the desired normal form by 12.26.

Proposition 13.11. If ¢ is prime #'-recursive in %, then @ = Luf.1(0) for a
certain I strictly #'-polynomial in 2.

Proof. This proof needs some care since a direct application of 13.10 to
¢ would only give a normal form with I' #'-polynomial in 2.

Proposition 9.2 implies that ¢ =1[T,] with T, strictly %’-polynomial
in 4. Multiplying by Id and using 6.13, 6.14, we get

@ =2[(Id,T'4R)] = 1[(4,0.1d.T'4R™)],
hence ¢ =A0.Lub,.(30,,0,1,T,R*(®,)) by 12.26. The mapping I'=

(3,1d,1d,T4R’?) is strictly #’-polynomial in 2 and ¢ = @(I)= Luf.T(6).
This completes the proof.

Proposition 13.12. If I is #'-recursive in #, then I = A0. Luf,.I',((0,6,)) for
a certain I, strictly (&' y-polynomial in 4.
This follows from 13.8, 13.10. Of course, I', is #'-primitive in %.

Proposition 13.13. If ¢ is #'-recursive in 4, then ¢ = Lu0.T'(0) with T strictly
<4’ »-polynomial in #4.

This follows from 13.8, 13.11.

Further normal form results are provided by the Normal Form Theorem
9.5 for &'. Take %, as in chapter 9. Its role in %" can be played by 4,,
so the strictly primitive members of %" will be those of the form ¢ with ¢
a strictly primitive member of #.

Proposition 13.14. If I" is #'-recursive in %, then

['=26.Lpl, o, --- ¥, 0,81, (T 2(0,),....CT, >(6,))

for certain g, ..., W, e{I} UB,Ty,....I,e{MI}u B and a strictly primitive y.
Proof. Proposition 9.5 implies that

r=T[f{I’a<|£D>v--:<Jm>:<r0>1”'1<rn>]]
with  ,,... . Yell}ud, Tg,....[Le{M}u% and a recursive .
Substituting [I]¢; for {if;> by 12.32, we get

F=T[fi(ra‘lﬁ0:---1lﬁmu<r0>9"-s<rr1>}]
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for a recursive y,. Repeating the last part of the proof of 9.4 and making use of
12.4, we get

I =1[0gs- s ¥ms L. R (TR, T, 3 R)]
with a strictly primitive i, which completes the proof by 12.26.

Proposition 13.15. If ¢’ is %'-recursive in %, then

qD:T.u'H'JI(st ”'alpm1'q=<r0>(ﬂ)a”<e<rn>[8))

for certain /o,...,.¥,,e {1} U, Ty,...,I,e{MI}UR and a strictly primitive .
Proof. Following the previous proof, we get

q‘j == T[f{iﬁ0| --1i|5m1 I's <r0>1-- 1<rﬂ'>]:[
for a strictly primitive y. Multiplying by /,, and taking i = (L, y), we get by 6.13

(b =§[l;(tﬁo="‘a‘ﬁmaRi:<FO>R:' ",<r‘n>RJ}:|v

which completes the proof by 12.27.

Omne may assume without any loss of generality that yry =1, ' = M and
W # Y, T # T for i # . It should also be mentioned that the above normal
form results do not imply those of chapter 9 by taking &' = .

The following two statements are called respectively First 4'-Recursion
Theorem and Parametrized First #'-Recursion Theorem. In contrast to the
corresponding theorems of chapter 9 their proofs are quite trivial and need
no p-axiom stronger then (££).

Proposition 13.16. If T is a mapping #'-recursive in 4, then pf.I(#) exists
and is an element %#’-recursive in %.
This follows from 12.27,

Proposition 13.17. If T is a mapping #%'-recursive in %, then A0.u0,.(6,1(60,))
exists and is @ mapping %4'-recursive in 4.

This follows from 12.25.

The following statements are called respectively Parametrized 4'-
Enumeration Theorem and %'-Enumeration Theorem.

Proposition 13.18, Let %, %' be finite and .# = %#(#,4’). Then there is a
mapping Xe.# universal for ..

Proof. .# is the set of all the members of %' recursive in #u
{1d, M1} 4, hence there is a Ze.# universal for .# by 9.18. If T'e.#, then
there is a n such that I' =AZ in &', hence T'(0) = Z(0) for all §. The proof
is complete.

By 13.7, it follows that whenever 4’ is finite, then there is a %'-recursive
mapping X such that T’ = A0.Z((,,...,,,, 8)) for a certain n, provided that
[ is #'-recursive in ¥ ,..., Y,

Proposition 13.19. Let #, %' be finite and % = {¢/@ge.#}. Then thereis a e
which is universal for %.
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Proof. Take o = Z(I), where X is the mapping considered in the previous
proof. It follows that ce# since ¢ = ZId. If pe%, then ¢e.#, hence ¢ =iz
for a certain n. Therefore, ¢ = aXid = id which implies ¢ = nig. The proof
is complete.

The notion of element (respectively mapping) principal universal for % (for
.#) 1s introduced exactly as in chapter 9. All the statements of chapter 9
concerning such elements and mappings remain valid with *%'-recursive in &’
substituted for ‘recursive in #°. It is worth mentioning that these conside-
rations on universal elements and mappings make use of the operation { )
of #' since so do the proofs of 13.18, 13.19, while propositions 13.16, 13.17 hold
for prime #'-recursiveness as well.

If { »=Toe# is a t-operation over .# with a corresponding set of
functional elements 4, then the following analogue to 13.9* shows that t-
recursiveness is a particular instance of #'-recursiveness.

Proposition 13.20*%. A unary mapping I" over % is t-recursive in & iff I' is
By {To}-recursive in 4.

This follows from 12.42*.

Accordingly, the equality

Ro(B, By {To}) = HB, By {To)})

holds for all #.

There is another possible situation of some interest, viz. consecutive spaces
&, %" with a t-operation { ) over #'. In particular, such spaces and
operations appear in the next chapter (the spaces %', %" and the operation
Tf), as well as in chapter 28 (the spaces &, %, and the operation St). We shall
not adduce the relevant general considerations, which are in the spirit of the
last two chapters.

A possible direction for further investigations in recursion theory on
consecutive spaces is to study #'-recursiveness for certain specilic %4’. We
introduce some monotonic mappings over .# involving quantification, which
may be taken to be in &', provided they are in %"

Let ceF\{0} and Q be a monotonic guantifier over the set .7, =
/0 <y <ol},ie. @cQ <2” and, if #/eQ and & = B = ./, then ZeQ.
Let Q" be the quantifier dual to Q, ie. Q¥ ={o/of = o/ &, \AcQ}.
Consider the mapping Q,:.% —.# such that

L, il Qyed () <0),
Q0)=% R, ifVr=00%esd (I £T)
0, otherwise,

where Qy e o/ (———) stands for {y/yesf, & —}eQ as usual.

Propesition 13.21. Q, is monotonic.

Proof. Suppose that 8§ <8,. If Q(6) =0, then Q) < Q(0,) trivially. If
Q,(0)= L, then Qy e (Y < 0), hence Qe o (i < 8,) by the monotonicity of
Q; and so Q,(0,)=L If Q,(6)=R, then Yt > 00"y e/ (f £ 1) hence Yt >
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6,Q%y e (Y £ 1), which implies Q,(0,) = R. The proof is complete.
Taking Q =4, V in particular, one gets

L, if 30 <y <0,8),
E(@)=<R, if¥Vr=8VY1(0 <y <a.1),
0, oherwise

L, ifo<@,
A0 =< R, if¥r>0(c<£1),
0, otherwise,

The above mappings fit the case when the elements L, R have no upper
bound in.#. If L, R have an upper bound U, then each two members of # have
an upper bound (see the hint to exercise 7.7); hence the mapping Q, becomes

L, if Qyess (<),
0, otherwise.

Oq[ﬁ) = {

However, appropriate mappings embodying quantification can be introduced
in this instance as well. Take a fixed subset € of #, 6%\ {0} and a monotonic
quantifer Q over o/ . Writing o/, %, respectively for {8/Qy e/ ,(f <0)}
{0/3pe¥(y < 0)}, the following mapping is monotonic

L, if Qe &Vt < 0(r¢%,\ ),
R, if 0¥\,

U, if Oeddy& 31 <O(te€ )\ ),
0, if 6¢%,u.,.

ch,%'(g) =

Recursion in Q, and @, , has been intensively studied in some particular
instances for, as will be shown in the exercises below, these mappings
generalize the well known functionals F% and E of Kechris and Moschovakis
[1977] and Moschovakis [ 1969] respectively. In the general theory however,
the usefulness of Q, and Q,, is yet to be tested.

EXERCISES TO CHAPTER 13

Exercise 13.1. Let.% be the IOS of example 4.7 and let ' be obtained from it
by 12.1. Let 0 be a fixed member of M, ¢ = 45.0, let Q, be a monotonous
quantifier over M and let

Q={d/o =, &uv{Domy/Yc}eQy}.

Show that .7, % are consecutive 10S, Q%" and

L, if Qus(f(s)=0),
Q.0 ={R, if Qgs(0(s) | & 0(s) # 0),
0, otherwise.
Hint. Use exercises 12.1, 12.2, 5.3 to show that & is iterative. Employ the
equality
Qu={X/XcM&{y/O<y<olX}eQ}.
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Exercise 13.1 implies that the mapping Q, is nothing else than the functional
F*  of Kechris and Moschovakis [1977],

0. if Qus(f(s)=0),
Fo (=41, if Q3s(f(5)] &f(5) #0),
1, otherwise,

where f ranges over the subset {f/f:M——w} of #, assuming w = M.
Indeed, each of Q,, F% , can be expressed by the other. In particular, E,
corresponds to F% = E"‘Q

Notice that Q, and QY can be reduced to each other in the above
example.

Exercise 13.2. Let & be the IOS of example 4.8, let &' be obtained from it
by 12.1,let 0, Q,, Q be the same as in exercise 13.1,let U = 1s.{L(s), R(s) } and
% = {@/@:M — M}. Prove that &, &' are consecutive 108, Q,,e#"' and

L, ifds(0eb(s)) & Is(B(s)T v O(s) = 0),
R, if V53t # 0(te0(s)&0¢0(s)),

U, if 35(0e8(s)) & Vs3It # 0 (teb(s)),
0, otherwise.

E,0)=

Therefore, E, , is in essence the functional E:# —— {0, 1} of Moschovakis
[1969], where

0cE(6), if 3s(0eb(s)) & Vs(B(s) L),
1eE(f), if ¥sIr+#0 (teb(s)).

(To be more precise, E,, gives an extension E* of E such that 0eE(f), if
Is(0€0(s)), without requiring ¥s(6(s) |.)

If &, &' are consecutive spaces, then &’ can play the role of & and
monotonic mappings Q,., Q, . over #' can be considered. Take o'e# “\{O'}.
We recall that

L if O <y <d,6),
E (0)={R, ifVe=0W (0 <y <d,7),
0, otherwise,

L, fe<t,
AA@)=< R, V7' =0(c"£7),
0', otherwise.

Exercisel3.3. Let A, for all 0. Show that E,(8) = L iff 30(E,(0'()) = L).
In particular, E (6")= L' iff 36(E(6(0)) = L).

Hint. Tt suffices to show that (0’ <y <o’ 0) iff 3P0 <y <
#(6), 0'(6)). Assuming O < ¥ < o'(0), 8(0), take y' = Ml(Ay, 4, 0').

Exercise 13.4. Prove that if E.(0(6)) = R whenever ¢'(0) # O, then E (0=
R’. In particular, YO(E(€'(8)) = R) implies E @)= R'.
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Hint. Show that 37" > 03 (0’ <y’ <¢'.7") implies 303t > 0'(0) Y (0 <
Y < o'(0), 7).

Exercise 13.5. Show that A,(0") =L iff A,., (0'(6))= L for all 6 such that
o'(0) # 0. In particular, 4,(6") = L iff VO(A(6'(8)) = L).

Exercise 13.6. Show that 30(A,(t"(6)) = R) implies 4,(¢')=R". In parti-
cular, 30(A(0'(0)) = R) implies A,(0')=R".

Hint. Suppose that 7' > & and ¢’ < t". Then '(0), 8'(6) < 7'(#) for all 6; hence
A,0(0'(8)) # R for all 8 such that ¢'(f) # O, which is not the case.

The last four exercises show that E_., 4, embody 3, V-quantification
over #.



CHAPTER 14

Transfer operation

The present chapter studies a specific t-operation called transfer, which is
connected with the operator nature of the elements in consecutive spaces.

Suppose that &, %", #" are consecutive 10S (i.e. both &7, & and &', " are
consecutive) and Tf: %" — F" satisfies

T/ (¢")(6)(6) = ¢"(6' (L6, ') )(RD)

for all ¢"e#F", e’ and fe#. Consecutive spaces to be constructed in
chapter 19 admit such an operation.

In order to show that Tfis a storing operation in the sense of chapter 10,
take =7 ={p/peF}, where j=i0.0(51)=MII"p" Id)=
MI(I", pld", 1d’). We recall that Id, MleZ' and Id', MI'e ", where Id=
0.1, M= A6.LORO, Id'=A8'.I' and M!'=20".L'R'E.

Proposition 14.1. g’ = ¢'p.
Proof.

@'(0) = pe'(©)) = '0(5,1) = ¢'B(O)
for all 6'; hence jg’ q?ﬁ

Proposition 14.2. p(e", ") = (po", py"). o
Proof. Using 14.1 and the equalities ' = I/, R” = R, (L, R")= (L, R’), we
get

plo", ") = p(L", R")(@", ") = (L', R")pe". ¥") = (L', R"p)(¢", ¥")
=(pL", pR" )", ¥") = (Pe", p¥").
Proposition 14.3, Tf(tp’) goM!’ (1", I, Ry = MI'(¢p', I, K'). Therefore, Tf(I")=

MI(I", L, R) and Tf (@) =o' Tf(I") = TS (")
Proof. We have

T/ (¢')(#)(6) = 0’0 (L', I)(RO) = 0'6'( L', R)(6)
for all @, 0; hence Tf(¢')(¢') = @'0'(L, R) for all #, which completes the proof.

108
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Proposition 14.4. T7(¢p R
Proof.

TH@)0)0) = ¢'(RO) = ¢'R'(0)
for all @, 0, hence Tf(¢")(#') = 'R’ for all 0"

Propesition 14.5. pTf (") = " p.
Proof.

BT (@")(@)(0) = (TS (9")(0))(0) = Tf (¢") () (p, 0) = 0" (0'(5, I'))(0)

for all @, 0; hence FTf(@")0)="(6'(4,I)) = "5(0) for all &. The
proof is complete.

Proposition 14.6. Whenever o py" <y"pt” for all p, then Tf(e"W" <

/)"
Proof We have

T(o"W"(6)(8) = @"W" (@)L, I))(RO) = ¢"(LEY Y "(8)(RO)
< ((LO)="(@)(RO) = Tf (x")"(6')(0)

for all &, 6, which completes the proof.
Now take

Kg=Tf(I"), Ky = MI(I, (L, L'R), R'R), K = MII", 'L, R'L, ),
Proposition 14.7. Kj(¢", ") =(Kjo", Kiy").
This follows [rom the proof of 14.2 since K{jp' = ¢’ K}, by 14.3.
Proposition 14.8. GK(L', R") = (5L, fR").
Proof. 14.5, 14.2 give
PKYL',R") = (L', R") = (BL, R")
Proposition 14.9. éK| = (o, p), (o, p) K} = pé.
Proof. We have
FEKA(0) = GKYO), 1) = KiOVG, 15, 1) = O(L, LR), R, 1)
=0'((¢,0).1) = 0((0, p)" I') = (0, p) (0
for all ¢. On the other hand,
(0, pVK5(0) = K5(9) (0, p), I') = (L%, R'L, R')((6, p), I')
= 06,5, 1) = p6(0)
for all #. The proof is complete.

Notice that T/ (I")K§ = K} by 14.6, while Tf(T/(I"))K] = K{ is valid as
well.

"

Proposition 14.10. Tf is a t-operation with functional elements Kj— K3,
1 =1,K4 = MI(I", R).
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Proof. Transler is obviously monotonic and 14.8, 14.9, 14.5, 14.6 imply
that it is a storing operation. The equality pK4(8)=0'R'(p,I') =6 gives
pKi = 1", which completes the proof by 10.18.

Proposition 14.11. ¢’ Tf(y/") = Tf(0'¥"), TA(Y" )¢’ = TFW"¢').
This follows from 14.3, 10.12.

Proposition 14.12. Tf((e", ") = (Tf(¢"), T/(W")), Tf(Al¢", ")) = A(Tf(¢"),
T; ") Tf(Le"]) =L[Tf (") 1T (I"). In particular, Tf({e">)=A(Tf(¢"L"),
Tf(R")).

Proof. The first equality follows from 10.13, 14.7, 10.12. Using 6.34, one
gets A(Tf (o"), Tf (")) = (I" > Tf(A(", ")) which implies the second equality
by 14.11. The third equality follows by the first one and the proof of 10.15.

Proposition 14.13, " = MI'(I",Id’, 1d)Tf(¢")K;, hence K can be replaced
by MI(I", Id, Id).
Proof. We have

MI(I" 1d, 1d) Tf (")K3(0)(0) = Tf (") @ RN, I')(6)
= Tf(@")(@'R)((6,0)) = "(0")(0)
for all #, 6. The proof is complete.

Proposition 14.14. Tf(Id")= R"Id'.
This follows from 14.4.

Proposition 14.15. T/(MI')= MI(L", L, MI(R", I, R")).
Proof.

Tf(MUI)(@)(6) = MU('(LE, 1)) (RO) = LO' (LY, I'R'6' (LY, I')(R6)
= LO/(LO, RO(LE,I'))(R6) = LO(L, R'(L, R))(6)
= MI(L, L, MI(R", L, R))(0)(6)

for all @', #, which completes the proof.
Proposition 14.10 can be sharpened as follows.

Proposition 14.16 (Transfer Operation Theorem). Tfis a t-operation with a
set of functional elements #¢={L',R",Id,MI'} and mappings X§, X{,
24 — Zf prime recursive in 4.

Proof. The elements 1", Tf(I"), Tf(L"), Tf(R"), Tf(Id", Tf(MI) may be
removed from 4}, since they are prime recursive in Id', MI' by 5.12, 14.3,
14.14,14.15, The mappings £, £, 24 — Zf satisfying the equalities (0), (1), (3)-
(5) of chapter 10 by 10.12, 14.12, 10.16, 14.13 are prime recursive in #5. This
completes the proof.

To indicate that notions of chapter 10 concern the operation Tf now, we
write tf-recursive, ti-recursive, tf-simple segment, tf y-axiom etc. Recall that ¢”
is tf-recursive in " = F" iff

@"ecl@Boo B[, 1L 3.0 1. Tf).
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Proposition 14.16 allows to apply the theory developed in chapter 10 to
transfer operation and tf-recursiveness. While the proof of the First tf-
Recursion Theorem depends on tfuA, the verification of this axiom in
particular instances is simplified by the fact that all tf-simple segments are
normal by 10.18.

The spaces &', %" are consecutive, hence tf-recursiveness can be character-
ized by making use of 10.2, 14.4, 12.34 as follows.

Proposition 14.17. Let Z'c #', 3" = #". Then the following are equivalent.

(1) " is tf-recursive in 'V B".

(2) o is recursive in {Id’, MI'T V& O Tf(B"). e

(3) " is prime recursive in {Id', MI'} VB UL Tf(A")).

In particular, ¢" is tf-recursive in 4 iff it is prime recursive in
{Id',MI'}u .

Now assume that another 10S . is also given, such that &, %"
are consecutive and TfeZ". Then propositions 12.40—12.42* hold with &,
& Tf playing the role of &, &, { ). Assume finally that Tf": 5" — F"
is a transfer operation, i..

T!'!{(ﬂlﬂ}{ﬂ”)[ar] — w"l(ﬂﬂ(ﬁlg’, I!}))(Rﬂa!)
for all "eF", 0"eF", e F . It is of interest to see how do the operations

T/, Tf" interact. Notice that unlike the basic IOS-operations, the isomorphism

of %", %" does not extent to ensure Tf((p”}z]"f’(?} for all " take
¢" =1d' for example.

Proposition 14,18, Tf ¢F". o
Proof. Suppose that Tf= ¢”. Then ¢" = ¢"(I") = Tf(I"). Using 14.14, 14.3,
we get

R = Tf(1d) =" (Id) = ¢"1d = Tf(I"Id' = (L, R),
which is not the case.
Proposition 14.19. T/(Tf) = MI"(Tf, MI'(L’, R"Id), R").
Proof. We have
T (TF)@")(@)(0) = Tf (o"(L'T, I")(R'O)(0) = ¢"(L'E, I")(RO'(LE, I))(RO)
= (L, RO(LE,I))(RO)
= @"((L&'R, R'&")(L0,I'))(RH)
= Tf("(LO'R', R'0'))(6)
for all ", &, 0; hence
TF(TS)(@")O) = Tf(@")(LOR, R'O)) = Tf (p")(MI(L', R), R")(0)
for all ", 8. Therefore
T(TS)(@") = Tf (oML, R),R")= MI'(Tf, MI(L, R"Id), R")(¢")

for all ¢”, which completes the proof.
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Proposition 1242* can be sharpened to give the following tf-
Conservativeness Theorem.

Proposition 14.20*. Let #” < #"” and I be a unary mapping over #". Then
the following are equivalent.

(1) I'" is a mapping tf-recursive in %".

(2) T is a member of #" prime recursive in

{Id M 1d", MI", Tf Y U %",
(3) T is a member of #" tI-recursive in
{1d',MI, Tf} L 2"

Proof. Propositions 14.19, 12.40 imply that the element {Tf(Tf)) is
prime recursive in Id, MF, Id", MI", Tf, hence (3) implies (2)
by 14.17. The implication (2)=(1) follows by 12.42* while (1)=(3) is
immediate. This completes the proof.

Using 12.3, 12.19, Id’, MI', 2" can be substituted respectively for id,
MT, %" in 14.20* since Id", MI" are among the initial elements.

EXERCISES TO CHAPTER 14

Exercise 14.1. Let [T*: "% —» Z " be such that

(", ") = 40.40.¢"(Ap. " (40 .0'((p. 9)))(6))(6).

Show that Tf can be expressed in terms of IT*, MU', Id'".
Hint.
Tf(¢") = TI¥(MI'(I", L), MI'(¢", R)).

Exercise 14.2. Show that the operation I[T* of the previous exercise can be
expressed in terms of Tf, MI', Id'.
Hint.

I*(¢", ") = MI(TSf (9" )MI(Tf ("), R', L), 1d', Id),

Exercise 14.3**. Show that the t-operation T satisfies the assumptions of
exercises 10.2-10.5, provided the elements Id, M[ are added to %),

Hint. Take p=A((L,L*R,R?, (L.RLR,R?), yi=(MI>HI"Id1d)
and Y = TA(MI)(MI[ MI(I",K')). These elements are prime recursive in Id,
MI Id’, MI' by 12.31, 12.33, 14.15. Show that Ay = A, my; = A, ii standing for
LR" or L'R™. Use exercise 10.8%*.

Exercise 14.4**. Let @' %', #" < %". Show that the following are
equivalent.

(1) " is tf-recursive in {Id, MI} L@ LB".

(2) ¢” is prime recursive in {Id, M[ Id', MI'} L&' U Tf(5").

Hint. Use 14.17, exercises 14.3%*, 10.2 and proposition 10.16.
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Exercise 14.5. Determine elements K}, K%, K7 to satisfy the assumptions of
exercise 10.9 with # playing the role of . o
Hint. Take K4=MII"R), Ki=MI("L,[,R), K;=MI(I",L'R,L,R"R).

Exercise 14.6. Let Co:#“ > #,Co":. %" - %" and Co": F"* - F" be collec-
tion operations such that Co"{@;}(#")=Co'{g;(#")} for all @'c#" and all
sequences {@,} in #". Determine an element K7 to satisfy the assumptions
of exercise 11.7 with = %" = #.

Hint. Take the element ] of exercise 14.3*% then take K7=
[I"]Co"{MI(K3y, AL, R')} and assign Co{(k,,p,)} 0 to {pk,}.

Exercise 14.7**. Let #' < %", #" < #" and ¢ e#". Show that the follow-
ing are equivalent.

(1) @™ is tf'-recursive in {IJ‘, M, Tf}ué?"u.:@”ﬂ

(2) @ is prime recursive in

{d, Ml 1d", MU, Tf Yy 0 B” O Tf(B”).
Hint. Use exercise 14.4** and 14.19 to get (1)=(2).

Exercise 14.8. Let Tf* be an operation over # " such that
T *(p™) = 16". 48" .26.¢" (it .0" (") (L6, 1)) (@' )(RH).

Show that Tf™* is a storing operation and Tj'*(?)= T/ (") for all ¢".
Hint. Take ¥* =% and K¥=K{,i=0, 1,2

Exercise 14.9. Show that the operation Tf* of the previous exercise can be
expressed in terms of Tf', Tf.

Hint. Take " =MI'MI"(I",R"),[') and show that Tf*")=
MI(Tf Tf(¢")e", Id, MI(Id",R ™))

Applying the construction of 12.1 to example 3.1 thrice, one gets consecutive
108 &, &', ", & which admit transfer operations Tf, Tf" and collection
operations Co, Co', Co" (by cxercise 11.1) satisfying all the assumptions made
in this chapter.




CHAPTER 15

Hierarchies of operative spaces

The study of consecutive spaces naturally develops into the study of
hierarchies of spaces. For, given an 10S &, one is tempted to construct by
12.1 a sequence {.%,} of consecutive spaces, then to try to bring them all
together into a single space %, and iterate, thereby constructing a transfinite
sequence of spaces. We feel that such hierarchies of spaces provide the appro-
priate domains for an intrinsic generalized recursion theory. In this chapter we
aim only to establish some basic properties.

Let & be an [OS. A hierarchy of 1OS based on & is a transfinite sequence
{#+} of 1OS such that &, = & and whenever ¢ < 1, then & is (isomorphic to)
a proper subspace of ,. Hierarchies {&,}.. ., oflength &; could also be of
interest, allowing us to work either in the single space #,,,if &, is a limit, or in
g A

A hierarchy is called monotonic if for all £ the 10S .%,, %, | are consecutive
and 7, = U,,< «F , whenever ¢ >0 is limit, identifying (thls is crucial!) the
subspace & of &, | with & ; for all £, Two constructions yielding monotonic
hierarchies will be given in chaptcr 20. They really exploit the idea outlined
above, except that beyond @ one takes in # ., only some of the monotonic
unary mappings over . ; as opposed to all of them.

Now assume that a monotonic hierarchy {%,} is given. The proper class
(JeZ : is denoted by .## (for ‘monotonic hierarchy’). The operations of
multiplication, pairing, translation and iteration are well defined on the whole
class . ', so . # could be regarded as the carrier of a single ‘universal’ IOS.
Notice that if & < .#3 is a set, then cardinality considerations imply that
#B = F, for a certain ¢ For all ge.#5 the ordinal r(p) =min {{/peF )}
(which is zero or a successor) is called the rank of @. Accordingly,
peF . iff rip) < <.

If peF .y, YeF; and o, is the member of &, ; identified with ¢, we
write @(if); for @ (if). It follows that @), = (), provided r(p)=&+ 1. If
)< &+ 1, then a certain member @, of #, is identified with ¢ so that
@ = @,; hence @(¥): = @,(¥) = @, which gives @(y): = @¥. In particular,
if pe#,, then ¢ = ¢(I),; this will often be used in the sequel. Moreover,
@ YEeF sy, xeF cand @ < imply @(x)s < Y(x);.

Another convenient notation is 4:0.——— for the mapping which assigns
to each feZ the expressmn———

Let Id. be the mapping Id of chapter 12 corresponding to .%;. Then

114
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Ids=A0.1 and Id,eF ;. On the other hand, 12.5 implies that Id.¢7
hence r(ld;) =& + 1.

Proposition 15.1. Id.¢ = Id, for all e/ A"

Proof. By transfinite induction on r(¢).

If (o) <&+ 1, then peF ., , and Id,@ = Id, follows from 12.4.

Suppose thatr(g) =5 + 1 > & + 1 and Ida) = Id, whenever r(y) <# + 1. Let
fe#,. Then ldpeF .. @(0),€F,, hence 1d, cp{&) = ld(¢(0),), = Id>(0(0),)
since r(Id )< 1+ 1. The induction assumptlon gives Id.*(¢(0),) = Id hence

Idup(8), = Id; = 1d,6 = 1d,(6),.
This holds for all 8% ,; hence Id.p = Id,. This completes the proof.

Proposition 15.2. If pe%;, then old.=/i0.0. Il peF ., then old.=
o) dd:. If peF ., n> <, then old,= @(ld;),ld,.

Proof. The first two assertions follows from 12.3 and 12.14.

Whenever pe# ., n> ¢, then old.e# ., ,, hence

@ld; = 2,0.(p1d;)(8), = 4,0.¢(Id6),), = 4,0.¢(1d0),
= 4,0.0(1dg), = o(ldy),Id,

using 15.1. The proof is complete.
Let Ml be the mapping M! of chapter 12 corresponding to &.. Then
Ml = 1.0.LOR0 and n(MI)=¢ + 1 by 12.17.

Proposition 15.3. If ¢, yeF ., then Mlp,v)=A.0.0(0)a)(0). In parti-
cular, if @, yeF ., then Mi{old,, Y1d,) = @y ld..
This follows from 12.16, 12.20.

Proposition 154. If peF ., YeF,, then @(y).= M oPld;,I).
Proof. Using 12.21, we get

Mifoyld, 1) = (o) I)s = o(1)o): = ).

Let Tr,, It, be the mappings Tr, It of chapter 12 corresponding to.%;. Then
Tre=A:0.{0, Irt—zcﬂ [6] and #(Tr,) =r(It) =<+ 1 by 12.30.

We are now going to specify abstract concepts of effective computability
within the hierarchy, bearing in mind those introduced in chapter 7.

Let pe.# 2 and # < .# 3. Then the notions of relative recursiveness,
prime recursiveness, primitive recursiveness, primitiveness and polynomiality
reappear as follows. We say that ¢ is recursive (prime recursive etc.) in 2 iff
@eF ; and ¢ is recursive (prime recursive etc.) in ZnF, in the sense of &,
for a certain £. This is a sound definition since if £ < #, then & is a subspace
of ¥, and BNF .= F ; hence peF, is recursive (prime recursive etc.) in
.@nﬁ¢ in the sense of . iff ¢ is recursive (prime recursive etc.) in # .7 ;
in the sense of .7,,.

The above nouons satisfy the ordinary properties of chapter 7 since those
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properties hold for &, for all £ In particular it is worth mentioning that
whenever ¢ is recursive (prime recursive etc.) in %, then ¢ is recursive (prime
recursive ctc.) in a finite subclass of 4.

Proposition 15.5. The elements Tr,, It, are prime recursive in Id;, Ml,.
This follows from 12.28, 12.29.

Proposition 15.6. Let 9.7, and # < # .. Then the following are equivalent.

(1) @ is recursive in 4.

(2) pecl(@Bu{L,R,Id:, Mly, Trg, It} /°,I1).

(3) pecBU{L,A,Id:, Ml;, Try, 11 }/e).

Proof. The implications (1)=>(2)=(3) are immediate. Supposing (3), we get
that ¢ is a mapping over % recursive in %, hence ¢ = @(I); is a member
of #, recursive in Z. The proof is complete.

A version of 15.6 for prime recursiveness can be given with Tr. omitted,
and similarly for the other notions considered. Further on we shall concentrate
on recursiveness, taking the element A as initial and correspondingly omitting
R and the pairing operation.

The following Hierarchy Conservativeness Theorem is an extension
of 12.38%.

Proposition 15.7%. Let pe# ., #<F, and ¢ be recursive in Bolld,
Ml,/n > &}. Then @ is recursive in 2.

Proof. Writing 4, for By {Id,, Ml;/¢ <[ <n}, there is a 1, such that ¢ is
recursive in %,,. Suppose that n>{. Applying 12.38* to the consecutive
spaces &, ., ,+1, We see that ¢ is a mapping over %, recursive in
Bo{ld, MI,/E <{<ny}; hence @ =), is an element recursive in
B {ld, Ml /¢ < <no}. Therefore, ¢ is recursive in 2, for a certain
1, <1, Since any decreasing sequence of ordinals is finite, we obtain in
finitely many steps an #, < ¢ such that ¢ is recursive in #,,. Therefore ¢ is
recursive in #u {Id,, Ml.}; hence ¢ = @(I); is recursive in & by 12.38*. The
proof is complete.

By 15.5, {Id,, Ml,/n > &} can be replaced by {Id,, MI,. Tr, It,/n > £}

The following conservativeness result called the Hierarchy First Recursion
Theorem is in a sense analogous to the First Recursion Theorem 5.3.2 of
Platek [1966].

Proposition 15.8*%. Let pe#,., and #<.% . Then the following are
equivalent.

(1) ¢ is (prime) recursive in #u {Id., Ml}.

(2) pecl(BU{L, A, Ide Mly, Trg, It} /).

(3) pecl(@U{L, A, 1d, ML, Tr,,It,/n = E}/°).

If pe# , then (1) can be replaced by "¢ 1s recursive in #'.

Proof. The sentence (1) means that ¢ is (prime) recursive in Z U {Id,, M}
within %, ,. Therefore, (1) and (2) are equivalent by the Conservativeness
Theorem 12.38*. It is immediate that (2) implies (3), while (3) implies (2)
by 15.7%.
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If peF ,, then (1) implies that ¢ is recursive in 2 by 12.38%. The proof is
complete.

Now assume that the hierarchy { &} admits the operation Tf of chapter 14,
ie. for all £ the mapping.

Tfeer=resa®Aes 1020, @(p(LOIdg 1)) 1 (RO),

is a member of % ., ;. Of course, #(Tf:,,) = £ + 3 by 14.18. The hierarchies
to be constructed in chapter 20 admit transfers.

Let pe 4 and # < .4 # . Then we say that ¢ is tf;, ,-recursive in 9 iff
peF .., and ¢ is tf-recursive in #NF,,, in the sense of chapter 14.
If ¢ is tf., ,-recursive in # and £ <#, then it can not be claimed that ¢ is
also tf, , ,-recursive in . Instead, ¢ is (prime) recursive in U {Idg ., Ml; 4,
Tfesi,) since the set 4, of functional elements corresponding to the t-
operation Tf,, is {L, R dg, ., Mg, }.

Proposition 14.20* may be extended to the following two Hierarchy tf-
Conservativeness Theorems.

Proposition 15.9*. Let @e%.,,. #=F .., and ¢ be recursive in
Bod ML [0 >EO{Tf,,,/n=E}. Then @ is tfy, ,-recursive in 4.
Proof. Writing #,, 4 ., respectively for

<‘£U{1d;sM(gJ/Ch{C£W}U{If§+2f‘§+25£+2i3?},
.@u{]d;,Mi;/i<§<q}u{Tf£+2ﬁ§+25§+2{17},

¢ is recursive in 4, for a certain 5, Assuming that o> ¢ +2, there are
two possible cases.

If 54 is not of the form { + 2, then 12.38* implies that ¢ is a mapping
over #, recursive in # ., hence ¢ = ¢(l),, is an element rec?ursive in# ..

If 5o ={ + 2, then an application of 14.20* to the consecutive spaces %, ,
% o+1 implies that @ is a mapping over %, tf, -recursive in Z ., ; hence
¢ = @(I),, is an element tf, -recursive in # ., . The implication (3)=(2) of
14.20* implies that ¢ is recursive in & ., in this case as well.

Therefore, there is an #; <#, such that ¢ is recursive in 4, . We get in
Fmitely many steps an 7, < ¢+ 2 such that ¢ is recursive in 4, ; hence ¢
is recursive in

Boldee ,Mleyy, 1dey 2, Ml 5, Tf¢+2}-

The implication (2)=-(1) of 14.20* ensures that ¢ is a mapping over #;,,
tfe+o-recursive in 4, hence @ = @(I);, is an element (f,, ,-recursive in %.
The proof is complete,

Proposition 15.10*. Let ¢ be a limit ordinal or a successor to a limit ordinal,
QeF o, B F;and @ be recursive in
B {ld, Ml /n = E}{Tfea/n+2> &}

Then ¢ is recursive in .
Proof. Writing 4, for

B (Ldy MIJE <L <} U{TfyralE <L +2<n)
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and following the proof of 15.9*%, we get an #, < & such that ¢ is recursive in
B, =B {ld;, Ml.}; hence @ is recursive in 4 by 12.38*. This completes the
proof.

There are two statements to extend 14.20%* since we have no transfer
operations over & ., %, for limit £ The corresponding two Hierarchy
First tf-Recursion Theorems below seem closer to the original theorem
of Platek.

Proposition 15.11*. Let ¢e% .., and #<F.,,. Then the following
are equivalent.

(1) ¢ is (prime) recursive in
'Q&U{Id§+luM[{+11Id¢'+21M!¢'+21 ng-o-z}-

(2) pecl(B Uil Adde, ,Mls, 1o ldes 3 s Ml g0, Tre g0, It i, Tf : 21/°)-
(3) oecl(BU{L, A} {ld, Ml /n>E}
{Try, Ity/n > E+ 13 u{Tfua/n > E}/0).

If eF ,,, then (1) can be replaced by ‘g is tf, . ,-recursive in #’. Exercise
14.3** allows us to drop Tre,, in (2).

Proof. The first two assertions are equivalent by 14.20%. The implication
(1)=>(3) is immediate. Assuming (3), we obtain that ¢ is tf. s-recursive
in BU{ldsy 1, Mlsyy, Tfey2} by 15.9% which gives (1) by the implication
(3)=(2) of 14.20%.

If peF «, 5, then (1) implics that ¢ is tf; . ,-recursive in # by 14.20%, The
proof is complete.

Proposition 15.12*, Let pe# ., # € #, and suppose that ¢ is not of the
form &, + 2. Then the following are equivalent.

(1) @ is (prime) recursive in #Z U {ld., ML}.
(2) pecl(BU{L, A, Idy, My, Try It:} /).
(3) pecl(BU{L, A} {Id, ML, Tr, It/ > EyO{ T o/ +2>E}/0).

If pe& ;, then (1) can be replaced by ‘¢ is recursive in %"

Proof. The equivalence (1)<>(2) was established in 15.8%, while (1)=(3) is
immediate. Finally, (3) implies (1) by 15.10%.

If e 7, then (1) implies that ¢ is recursive in # by 12.38*. The proof is
complete.

Some concluding remarks.

The carrier of a monotonic hierarchy with transfers seems to form a model
of a typed Ap-calculus with combinators I,L,R, Ml, and I1,=TI[#5;
the p-operation concerned is introduced in the exercises below. Instead of
A A one may consider initial segments 7 ., ¢ a limit ordinal.

Transfers in a hierarchy are most probably independent, i.e. Tf;, , is not
recursive in {Id,, M1,/n =0} U {Tf, ., /n # &} for all £ (Though we have not
even proved that Tf,,, is not recursive in {Id,, Ml,/n > 0}.) Therefore, the
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transfer operation is necessary for the abovementioned combinatorial
completeness.

It may be of some interest to study recursion in certain specific elements,
e.g. elements embodying quantifiers. Among the possible candidates are the
mappings Q,, Q, . of chapter 13.

The work of Platek referred to above studies what can be described in
[OS-terms as the e-segment of a monotonic hierarchy based on example 4.7.
Therefore, the considerations of this chapter embody Platek’s work in
Generalized Recursion Theory in a more general setting.

EXERCISES TO CHAPTER 15

Exercise 15.1. Let ¢, yeF . and @, < y. Show that there is a 7, €%, such

that o, ¥ <y,.
Hint. Use transfinite induction on #(y).

Exercise 15.2. Show that pe# . iff = Ml(old,, I). Therefore, if pe.# ., then
@ is polynomial in ld,, MI,.
Hint. pe#; iff ¢ = o(I)..

Exercise 15.3. Show that whenever & <#, then
Tre= RMI (It (MI(Lld,, L1d;), MI(RId,, RId;)), I).

Hint. Observing that ., ; is a subspace of &, get Tr, = Rit,((MI:(L, LId;),
MI.(R,RId;))), by the proof of 12.28, then use 15.4.

Exercise 15.4. Show that if £ <#, then
Ite= RMI,(It,(Id:, Ml1d,), ).

Hint. As for the previous exercise, with 12.28 replaced by 12.29.
Write p.0. ——— for the least § in %, such that——— <@, provided
it exists.

Exercise 15.5. Let ¢@e# .. ;. Show that u.f.¢p(f), exists and equals
MI(R[@R],I). Show that u,0.¢(0), = R[@R], provided & <.

Hint. 12.27 implies that 0, = u:0.¢@(0): exists and 0,1d: = R[¢R]. Make
use of exercise 15.2.

Exercise 15.6. Prove that there is no collection operation over #;, £ > w.

Hint. Suppose that Co: %y — % , salisfies the axiom ¢A; of chapter 11.
Take ¢ = Co{¢,}, where r(¢,) = n for all n. Construct a sequence £; > -+ >
Snzw such that o(l);,...(DyeF; ., for all 1<i<n, and ¥ =o(l);,...
(g, €F ,,. Assuming r(y)=m, get @piy = Pui1()s,...(Ne, =m+ lYeF,,
which is not the case.



